NONHSAT184603.1 基因对解旋酶基因BLM 表达的影响
杨丽红1, 2, 3 , 吴小敏1, 2, 4 , 崔小芝1, 2, 4 , 吴巧群1, 2, 4 , 罗斌杰1, 2, 3 , 谌颖莲1, 2, 5 , 许厚强1, 2, 4, *
1 贵州大学 生命科学学院,高原山地动物遗传育种与繁殖教育部重点实验室,贵阳 550025; 2 贵州大学 生命科学学院,贵州省动物遗传育种与繁殖重点实验室,贵阳 550025; 3 贵州大学 生命科学学院,贵阳 550025; 4 贵州大学 动物科学学院,贵阳 550025; 5 贵州大学 医学院,贵阳 550025
Effect of NONHSAT184603.1 Gene on the Expression of Helicase Gene BLM
YANG Li-Hong1, 2, 3 , WU Xiao-Min1, 2, 4 , CUI Xiao-Zhi1, 2, 4 , WU Qiao-Qun1, 2, 4 , LUO Bin-Jie1, 2, 3 , CHEN Ying-Lian1, 2, 5 , XU Hou-Qiang1, 2, 4, *
1 Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang 550025, China; 2 Key Laboratory of Animal Genetics, Breeding and Reproduction in Guizhou Province,College of Life Sciences, Guizhou University, Guiyang 550025, China; 3 College of Life Science, Guizhou University, Guiyang 550025, China; 4 College of animal science, Guizhou University, Guiyang 550025, China; 5 College of Medical, Guizhou University, Guiyang 550025, China
摘要 解旋酶BLM (bloom helicase)在细胞的增殖生长过程中有着重要的调控作用,YAP (yes associated protein)和TAZ (transcriptional coactivator with PDZ-binding motif)蛋白作为哺乳动物Hippo信号通路下游的转录共激活因子和关键成分,参与调控细胞的增殖、凋亡以及迁移等多种生理过程,而长链非编码RNA (long non-coding RNA, LncRNA)在细胞的生长增殖过程中具有重要的调控作用。为探究LncRNA对BLM 、YAP 、TAZ 表达的影响,本研究通过mirBase (http://www.mirbase.org/)、NONCODE (http://www.noncode.org/)及自主开发程序SWChen 2.3筛选与BLM解旋酶相关的LncRNAs,利用荧光定量PCR技术检测筛选的LncRNA在22RV-1、PC3、LNCap、WPMY-1四种细胞系中的表达情况,构建LncRNA超表达载体,检测转染后24及48 h LncRNA对BLM 、YA P及TAZ 的影响。本研究以筛选出的NONHSAT184603 .1 (缩写为N183 )(GenBank No. m121218_085412_00126_c100)为候选基因,荧光定量PCR检测结果显示,N183 在前列腺癌细胞系22RV-1和LNCap细胞中的表达极显著低于前列腺正常上皮细胞系WPMY-1 (P <0.01),但在前列腺癌细胞系PC3中的表达极显著高于WPMY-1 (P <0.01);WPMY-1细胞转染N183 超表达载体24 h后与对照组比较,BLM 表达极显著下调(P <0.01),且TAZ 表达也是极显著下调(P <0.01),转染48 h后BLM 和YAP 表达均极显著上调(P <0.01);PC3细胞在转染48 h后,BLM 表达量显著下调(P <0.05),但YAP 和TAZ 表达差异不显著(P >0.05);以上结果表明N183 在前列腺癌细胞及正常细胞中能够抑制BLM 基因的表达,但对增殖指标基因YAP 和TAZ 的影响具有差异,为今后以BLM解旋酶为抗癌靶标对抗癌症提供基础数据。
关键词 :
前列腺癌细胞 ,
BLM解旋酶 ,
Hippo信号通路 ,
NONHSAT184603.1
Abstract :BLM (bloom helicase) plays an important role in cell proliferation and growth. YAP (yes associated protein) and TAZ (transcriptional coactivator with PDZ-binding motif) porteins, as transcriptional coactivators and key components downstream of the mammalian Hippo signal pathway, are involved in the regulation of cell proliferation, apoptosis, migration and other physiological processes.And the long non-coding RNA (LncRNA) is very critical for regulating gene expression in cell growth and proliferation. To explore LncRNAs effect on gene expression of BLM , YAP , TAZ and screen BLM helicase related LncRNAs, fluorescence quantitative PCR technique had been used to detect the expression of selected LncRNA in 4 kinds of cell lines (22RV-1, PC3, LNCap, WPMY-1). Construction of LncRNA over-expression vector had been transfected in PC3 cells and WPMY-1 to detect the impact on BLM , YAP and TAZ gene after transfection LncRNA 24 and 48 h by using the fluorescent quantitative PCR technique. The NONHSAT184603.1 (abbreviated as N183 ) (GenBank No. m121218_085412_00126_c100) was successfully screened as candicate. The fluorescence quantitative PCR results showed that the expression of N183 in 22RV-1 and LNCap cells was significantly lower than that in normal prostate epithelial cell line WPMY-1 (P <0.01), and the expression in PC3 cells was significantly higher than that in WPMY-1 (P <0.01). After transfection with N183 over-expression vector, compared with the control group, the expression of BLM and TAZ were significantly down-regulated 24 h after transfection (P <0.01), and the expression of BLM and YAP were significantly up-regulated 48 h after transfection (P <0.01). BLM expression was significantly down-regulated (P <0.05), but there were no significant difference in YAP and TAZ expression in PC3 cells 48 h after transfection with N183 over-expression vector (P >0.05).The above results indicated that N183 could inhibit BLM gene expression in prostate cancer cells and normal cells but had different effect no YAP and TAZ genes, which made a contribution of basic data for anti-cancer researches by targeting BLM helicase.
Key words :
Prostate cancer cell
BLM helicase
Hippo signal pathway
NONHSAT184603.1
收稿日期: 2020-02-16
通讯作者:
*,gzdxxhq@163.com
引用本文:
杨丽红, 吴小敏, 崔小芝, 吴巧群, 罗斌杰, 谌颖莲, 许厚强. NONHSAT184603.1 基因对解旋酶基因BLM 表达的影响[J]. 农业生物技术学报, 2020, 28(9): 1642-1651.
YANG Li-Hong, WU Xiao-Min, CUI Xiao-Zhi, WU Qiao-Qun, LUO Bin-Jie, CHEN Ying-Lian, XU Hou-Qiang. Effect of NONHSAT184603.1 Gene on the Expression of Helicase Gene BLM . 农业生物技术学报, 2020, 28(9): 1642-1651.
链接本文:
http://journal05.magtech.org.cn/Jwk_ny/CN/10.3969/j.issn.1674-7968.2020.09.013 或 http://journal05.magtech.org.cn/Jwk_ny/CN/Y2020/V28/I9/1642
[1] 谌颖莲, 许厚强, 赵佳福, 等. 2018. 影响BLM 基因表达的miRNAs筛选及抑制效率研究[J]. 生物技术, (01): 54-59. (Chen Y L, Xu H Q, Zhao J F, et al. 2018. Screening and inhibition efficiency of miRNAs affecting BLM gene expression[J]. Biotechnology, (01): 54-59.) [2] 赖卫强, 张亚琼, 高琳, 等. 2014. BLM解旋酶在白血病骨髓细胞中的表达及其临床价值[J]. 中国乡村医药, 21(10): 61-62. (Lai W Q, Zhang Y Q, Gao L, et al.2014. Expression of BLM helicase in leukemia bone marrow cells and its clinical value[J]. China Rural Medicine, 21(10): 61-62.) [3] 骆衡, 陈祥, 段丽霞, 等. 2016. 大肠杆菌RecQ解旋酶的生物学分析[J]. 中国生物化学与分子生物学报, 26(12): 1143-1150. (Luo H, Chen X, Duan L X, et al.2016. Biological analysis of RecQ helicase in Escherichia coli [J]. Chinese Journal of Biochemistry and Molecular Biology, 26(12): 1143-1150.) [4] 孟惠惠, 许厚强, 刘金河, 等. 2014. 三种癌细胞株中Bloom综合征解旋酶(BLM)的表达水平高于正常细胞[J]. 细胞与分子免疫学杂志, 30(06): 649-651. (Meng H H, Xu H Q, Liu J H, et al.2014. Expression levels of bloom syndrome helicase (BLM) in three cancer cell lines were higher than normal cells[J]. Journal of Cellular and Molecular Immunology, 30(06): 649-651.) [5] 潘金昌, 孟小丹, 龚朝辉. 2018. LncRNA作为竞争性内源RNA在非小细胞肺癌中的作用[J]. 生物化学与生物物理进展, 45(11): 1126-1135. (Pan J C, Meng X D, Gong C H.2018. Role of LncRNA as competitive endogenous RNA in non-small cell lung cancer[J]. Advances in Biochemistry and Biophysics, 45(11): 1126-1135.) [6] 史婧. 2017. BLM解旋酶的酶学特性与DHBN结构研究[D]. 博士学位论文, 西北农林科技大学, 导师: 奚绪光, PP. 1-3. (Shi J.2017. Enzymatic properties and DHBN structure of BLM helicase [D]. Thesis for Phd., Northwest A & F University, Supervisor: Xi X G, pp. 1-3.) [7] 滕若冰, 余鹏, 高漓. 2019. LncRNA ATB/miR-107/STAMBPL1轴调控前列腺癌增殖、转移和侵袭的作用机制[J].重庆医学, 48(23): 3965-3969. (Teng R B, Yu P, Gao L.2019. Mechanism of LncRNA ATB/ mir-107 /STAMBPL1 axis regulating proliferation, invasion and metastasis of prostate cancer[J]. Chongqing Medicine, 48(23): 3965-3969.) [8] 姚志峰, 张译文, 姚建新, 等. 2019. 长链非编码RNA与肿瘤代谢的研究进展[J]. 中国肿瘤, 28(04): 286-294. (Yao Z F, Zhang Y W, Yao J X, et al.2019. Research progress of long non-coding RNA and tumor metabolism[J]. Chinese Cancer, 28(04): 286-294.) [9] 郑艺, 刘杰麟, 韩莹, 等. 2018. 结肠癌组织中BLM、RECQ4的表达水平及临床意义[J]. 贵州医科大学学报, 43(10), 1217-1220, 1231. (Zheng Y, Liu J L, Han Y, et al.2018. Expression level and clinical significance of BLM and RECQ4 in colon cancer tissues[J]. Journal of Guizhou Medical University, 43(10): 1217-1220, 1231.) [10] 郑艺, 杨爽, 黄晏军, 等. 2019. 衰老小鼠肝脏、脾脏和骨髓中Blm解旋酶表达水平[J]. 贵州医科大学学报, 44(07): 767-772. (Zheng Y, Yang S, Huang Y J, et al.2019. Expression level of Blm helicase in liver, spleen and bone marrow of aging mice[J]. Journal of Guizhou Medical University, 44(07): 767-772.) [11] Bachrati C Z, Hickson I D.2003. RecQ helicases: Suppressors of tumorigenesis and premature aging[J]. Biochemical Journal, 374(374): 577-606. [12] Chen Y, Zhao J, Duan Z, et al.2019. miR27b3p and miR607 cooperatively regulate BLM gene expression by directly targeting the 3'UTR in PC3 cells[J]. Molecular Medicine Reports, 19(6): 4819-4831. [13] Deng L, Yang S B, Xu F F.2015. Long noncoding RNA CCAT1 promotes hepatocellular carcinoma progression by functioning as let-7 sponge[J]. Journal of Experimental & Clinical Cancer Research, 34(1): 18. [14] Du J, Chen M, Liu J, et al.2019. LncRNA F11-AS1 suppresses liver hepatocellular carcinoma progression by competitively binding with miR-3146 to regulate PTEN expression[J]. Journal of Cellular Biochemistry, 120(10): 18457-18464. [15] Fang Q, Chen X, Zhi X.2016. Long non-coding RNA (LncRNA)urothelial carcinoma associated 1 (UCA1) increasesmulti-drug resistance of gastric cancer via downregulating miR-27b[J]. Medical Science Monitor, 22(2016): 3506-3513. [16] Guo J B, Ma Y B, Peng X Q, et al.2019. LncRNA CCAT1 promotes autophagy via regulating ATG7 by sponging miR-181 in hepatocellular carcinoma[J]. Journal of Cellular Biochemistry, 120(10): 17975-17983. [17] Harmon F H, Kowalczykowski S C.2001. Biochemcial characterization of the DNA helicase activity of the Escherichia coli RecQ helicase[J]. Journal of Biological Chemistry, 276(1): 232-243. [18] Hong J H, Yaffe M B.2006. TAZ: A beta-catenin-like molecule that regulates mesenchymal stem cell differentiation[J]. Cell Cycle, 5(2): 176-179. [19] Hu Y, Lu X, Barnes E.2005. Recql5 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossovers[J]. Molecular & Cellular Biology, 25(9): 3431-3442. [20] Pfaffl M W, Horgan G W, Dempfle L, et al.2002. Relative expression software tool (REST©) for group-wise comparis on and statistical analysis of relative expression results in real-time PCR[J]. Nucleic Acids Research, 30(9): e36-e36. [21] Shigeeda W, Shibazaki M, Yasuhira S, et al.2017. Hyaluronic acid enhances cell migration and invasion via the YAP1/TAZ-RHAMM axis in malignant pleural mesothelioma[J]. Oncotarget 8(55): 93729-93740. [22] Sun Y, Jiang T, Jia Y, et al.2019. LncRNA MALAT1/miR-181a-5p affects the proliferation and adhesion of myeloma cells via regulation of Hippo-YAP signaling pathway[J]. Cell Cycle, 18(19): 2509-2523. [23] Vlug E J, Ven R A H, Vermeulen J Fet al., 2013. Nuclear localization of the transcriptional coactivator YAP is associated with invasive lobular breast cancer[J]. Cellular Oncology, 36(5): 375-384. [24] Wu X, Yan T, Wang Z, et al.2017. LncRNA ZEB2-AS1 promotes bladder cancer cell proliferation and inhibits apoptosis by regulating miR-27b[J]. Biomed Pharmacother, 96(2017): 299-304. [25] Xiao J T, Wei W, Swei S H.2019. Interactions among LncRNAs, miRNAs and mRNA in colorectal cancer[J]. Biochimie, 163(2019): 58-72. [26] Yoon J H, Abdelmohsen K, Srikantan S, et al.2012. LincRNA-p21 suppresses target mRNA translation[J]. Molecular Cell, 47(4): 648-655.
[1]
刘春晨, 杜敏杰, 邢向阳, 鲁琳, 潘登科. GGTA1 、GGTA1 /β4GalNT2 不同基因型敲除猪免疫原性检测 [J]. 农业生物技术学报, 2020, 28(9): 1587-1594.
[2]
付琳, 任航行, 王高富, 蒋婧, 李杰, 孙晓燕, 刘良佳, 周鹏, 张丽. 酉州乌羊LncRNA XLOC _15448 的组织表达及其在黑色素沉积过程中互作分子的预测 [J]. 农业生物技术学报, 2020, 28(8): 1441-1449.
[3]
陈楚杰, 裴杨莉, 刘璐璐, 杨亚岚, 张垒霞, 李华, 李奎. 巴马小型猪组织qRT-PCR内参基因的筛选 [J]. 农业生物技术学报, 2020, 28(6): 1105-1113.
[4]
陈子璇, 迟诚林, 安亚龙, 陈才, 宋成义, 王宵燕. 猪SLC26A7 基因内含子1中内源性逆转录病毒(ERV)转座子插入多态与生长性状的关联分析 [J]. 农业生物技术学报, 2020, 28(4): 711-719.
[5]
张继, 吴雪, 邱淦远, 刘鹏程, 杨茂林, 刘若余. 江口萝卜猪UCP3 基因变异及其表达量与肉质性状关联性分析 [J]. 农业生物技术学报, 2020, 28(3): 490-500.
[6]
吴小敏, 倪锴, 朱晓锋, 谌颖莲, 赵佳福, 许厚强. 猪PRKAA1 基因相关LncRNAs的筛选及其在组织中的表达分析 [J]. 农业生物技术学报, 2020, 28(2): 232-241.
[7]
巩建飞, 刘欣, 孙金海, 王立贤. 猪脂肪细胞分化及调控研究进展 [J]. 农业生物技术学报, 2020, 28(2): 325-332.
[8]
崔文涛, 谢珊珊, 李想, 毕瀚方. 通过ZFN技术编辑猪MSTN 基因创制高瘦肉率梅山猪新种质 [J]. 农业生物技术学报, 2019, 27(12): 2272-2280.
[9]
李文杨, 刘远, 吴贤锋, 黄勤楼. 山羊IGF -1 基因的骨骼肌表达特性及其SNPs与生长性状的关联分析 [J]. 农业生物技术学报, 2019, 27(12): 2188-2197.
[10]
吴彩霞, 刘朝明, 颜泉梅, 欧阳振, 赵宇, 张全军, 樊娜娜, 赖良学. 利用TALEN技术构建猪内源性基因Tiki1 打靶猪模型 [J]. 农业生物技术学报, 2019, 27(10): 1858-1868.
[11]
靳伟, 代敏敏, 李德娟, 樊宝良. CRISPR/Cas9介导的外源基因在猪PSP 位点的定点整合 [J]. 农业生物技术学报, 2019, 27(9): 1569-1581.
[12]
朱晓锋, 许厚强, 陈伟, 谌颖莲, 倪锴, 吴小敏, 倪萌萌, 卢贤君. 从江香猪IGF -1 和IGF -2 基因的克隆、表达及生物信息学分析 [J]. 农业生物技术学报, 2019, 27(8): 1382-1391.
[13]
赵忠海, 周迪, 李辉, 易恒洁, 龙清孟, 师新彩, 卜小雁, 陈林, 杨华婷, 李兴才. 利用mtDNA D-loop区研究贵州猪种的遗传多样性与起源 [J]. 农业生物技术学报, 2019, 27(7): 1206-1214.
[14]
王伟, 黄晓宇, 闫尊强, 马晓文, 王鹏飞, 谢开会, 雒瑞瑞, 高小莉, 马艳萍, 滚双宝. 猪miR-339-3p靶基因预测分析及部分靶基因验证 [J]. 农业生物技术学报, 2019, 27(5): 885-896.
[15]
单保森, 刘鑫, 罗武, 邵勇钢, 韦伟, 陈杰, 张立凡. siRNA干扰CAT 基因表达对猪皮下前体脂肪细胞分化的影响 [J]. 农业生物技术学报, 2019, 27(4): 666-676.