Analysis of Root Physiology and Related Gene Expression in Maize (Zea mays) Under Low Temperature Stress
ZHAO Xun-Chao, GE Sheng-Nan, WEI Yu-Lei, XU Xiao-Xuan, DING Dong, LIU Meng, ZHANG Jin-Jie, SHAO Wen-Jing, XU Jing-Yu*
Heilongjiang Provincial Key Laboratory of Modern Agricultural Cultivation and Crop Germplasm Improvement, College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
Abstract:Low temperature is one of the major abiotic stresses in northern China. In this study, the maize (Zea mays) inbred line 'He 344' was used as the experimental material, which were analyzed changes of antioxidant system, osmotic adjustment substances and related gene expression of root under low temperature at different time points (12 h, 24 h, 3 d and 7 d). The result suggested that compared with the control at low temperature for 7 d, the fresh and dry weights of maize seedling roots were reduced by 47.9% and 66.7%, respectively; Superoxide dismutase (SOD) and peroxidase (POD) activity gradually increased, compared with the control, which increased by 44.8% and 30.1%, respectively; Proline (Pro) and malondialdehyde (MDA) content increased by 77.6% and 83.1%, respectively, compared to the control. A total of 10 ZmSODs genes were screened from transcriptome data of maize seedlings (3 d low temperature treatment vs control). Most ZmSODs genes were up-regulated, among which ZmSOD1, ZmSOD7 and ZmSOD9 were found higher relative expression compared with other genes. A total of 12 up-regulated ZmPODs genes were screened, of which ZmPOD35, ZmPOD92, ZmPOD94 and ZmPOD108 were highly up-regulated. A total of 9 genes encoding lipoxygenase (LOX) enzyme were screened, among which ZmLOX3, ZmLOX5, ZmLOX6 and ZmLOX7 genes were up-regulated. A total of 3 genes related to proline synthesis (delta 1-pyrroline-5-carboxylate synthetase, P5CS) gene were identified, among which ZmP5CS1 and ZmP5CS4 were up-regulated. This study provides a reference for further study on physiological indicators and their related gene expression regulation in the root of maize seedlings under low temperature.
[1] 陈义挺, 赖瑞联, 冯新, 等. 2019. 猕猴桃POD基因的克隆和表达分析[J]. 热带亚热带植物学报, 27(1): 11-18. (Cheng Y T, Lai R L, Feng X, et al.2019. Cloning and expression analysis of POD genes in kiwifruit[J]. Journal of Tropical and Subtropical Botany, 27(1): 11-18.) [2] 冯坤, 郑青松, 俞佳虹, 等. 2017. 超氧化物歧化酶的遗传特征及其在植物抗逆性中的研究进展[J]. 分子植物育种, 15(11): 4498-4505. (Feng K, Zheng Q S, Yu J H, et al.2017. The characteristics of superoxide dismutase (SOD) in evolutions and its research in plant resistance[J]. Molecular Plant Breeding, 15(11): 4498-4505.) [3] 高桂花, 王瑞兵, 刘艳芳, 等. 2006. 低温胁迫下玉米幼苗生理变化的研究[J]. 河北农业科学, 10(04): 16-19. (Gao G H, Wang R B, Liu Y F, et al.2006. The research of physiological changes in maize seedlings under chilling stress[J]. Journal of Hebei Agricultural Sciences, 10(04): 16-19.) [4] 关贤交, 欧阳西荣. 2004. 玉米低温冷害研究进展[J]. 作物研究, 5(S1): 353-357. (Guan J X, OuYang X R.2004. Research progress of cold in maize[J]. Crop Research, 5(S1): 353-357.) [5] 侯丽霞. 2013. 水杨酸对低温胁迫下玉米幼苗某些生理指标的影响[J]. 吉林农业科学, 38(5): 4-6. (Hou L X.2013. Effect of salicylic acid on some physiological indexes of corn seedlings under chilling stress[J]. Journal of Jilin Agricultural Sciences, 38(5): 4-6.) [6] 扈光辉, 张志武, 杨德光, 等. 2014. 玉米耐低温冷害研究进展[J]. 中国农学通报, 30(33): 1-7. (Hu G H, Zhang Z W, Yang D G, et al.2014. Research progress of cold tolerance of maize[J]. Chinese Agricultural Science Bulletin, 30(33): 1-7.) [7] 江福英, 李延, 翁伯琦, 等. 2002. 植物低温胁迫及其抗性生理[J]. 福建农业学报, 17(3): 190-195. (Jiang F Y, Li D, Weng B Q, et al.2002. Review on physiology of chilling stress and chilling resistance of plants[J]. Fujian Journal of Agricultural Sciences, 17(3): 190-195.) [8] 姜辉. 2016. 苗期低温胁迫对玉米根系生长的影响[J]. 黑龙江农业科学, (02): 15-17. (Jiang H. 2016. Effect of low temperature on root growth of maize seedlings[J]. Heilongjiang Agricultural Sciences, (02): 15-17.) [9] 李海燕, 毕文双, 王燚, 等. 2019. 外源ALA对低温胁迫下玉米幼苗根系生长及生理特性的影响[J]. 东北农业大学学报, 50(02): 9-17. (Li H Y, Bi W S, W Y, et al.2019. Effect of exogenous ALA on root growth and physiological characteristics of maize seedlings under low temperature stress[J]. Journal of Northeast Agricultural University, 50(02): 9-17.) [10] 罗宁, 魏湜, 李晶, 等. 2014. 低温胁迫对玉米苗期根系特征及电导率的影响[J]. 生态学杂志, 33(10): 2694-2699. (Luo N, Wei S, Li J, et al.2014. Effects of low-temperature stress on root system characteristics and electric conductivity of maize seedlings[J]. Chinese Journal of Ecology, 33(10): 2694-2699.) [11] 王海波, 郭俊云, 赵志军, 等. 2017.小桐子过氧化物酶73基因的克隆及表达分析[J]. 核农学报, 31(1): 29-36. (Wang H B, Guo J Y, Zhao Z G, et al.2017. Cloning and expression analysis of the gene encoding peroxidase 73 in Jatropha curcas[J]. Acta Agriculturae Nucleatae Sinica, 31(1): 29-36.) [12] 王瑞, 马凤鸣, 李彩凤, 等. 2008. 低温胁迫对玉米幼苗脯氨酸、丙二醛含量及电导率的影响[J]. 东北农业大学学报, 39(5): 20-23. (Wang R, Ma F M, Li C F, et al.2008. Effect of low temperature stress on proline, malondialdehyde contents and electric conductivity of maize seedling[J]. Journal of Northeast Agricultural University, 39(5): 20-23.) [13] 王迎春, 褚金翔, 孙忠富, 等. 2006. 玉米对低温胁迫的生理响应及不同品种间耐低温能力比较[J]. 中国农学通报, 22(9): 210-212. (Wang Y C, Chu J X, Sun Z F, et al.2006. Study on physiological response of maize to low temperature and comparison of frost hardiness varieties[J]. Chinese Agricultural Science Bulletin, 22(09): 210-212.) [14] 魏湜, 罗宁, 李晶, 等. 2014. 低温胁迫下玉米苗期根系保护酶活性及内源激素变化[J]. 东北农业大学学报, 45(9):1-8. (Wei S, Luo N, Li J, et al.2014. Change of the root protective enzyme activities and endogenous hormones of maize seedling under low-temperature stress[J]. Journal of Northeast Agricultural University, 45(9): 1-8.) [15] 巫建华, 吴中侠, 王媛花, 等. 2017. 水杨酸和脯氨酸对盐胁迫下生菜相关基因表达的影响[J]. 浙江农业学报, 29(9): 1489-1497. (Wu J H, Wu Z J, Wang Y H, et al.2017. Effect of salicylic acid and proline on gene expression profiles in response to salt stress in lettuce[J]. Acta Agriculturae Zhejiangensis, 29(9): 1489-1497.) [16] 吴雪霞, 朱月林, 朱为民, 等. 2006. 外源一氧化氮对NaCl胁迫下番茄幼苗生理影响[J]. 中国农业科学, 39(3): 575-581. (Wu X X, Zhu Y L, Zhu W M, et al.2006. Physiological effects of exogenous nitric oxide in tomato seedlings under NaCl stress[J]. Scientia Agricultura Sinica, 39(3): 575-581.) [17] 于文颖, 冯锐, 纪瑞鹏, 等. 2013. 苗期低温胁迫对玉米生长发育及产量的影响[J]. 干旱地区农业研究, (5): 220-226. (Yu W Y, Feng R, Ji R P, et al. 2013. Effects of low temperature stress in seedling stage on growth development and yield for maize[J]. Agricultural Research in the Arid Areas, (5): 220-226.) [18] 赵英男, 郑宝香, 黄珊珊, 等. 2016. 气候变化对东北地区玉米生产的影响[J]. 河南农业,(10): 62. (Zhao Y N, Zheng B X, Huang S S, et al. 2016. Impact of climate change on maize production in northeast China[J]. Agriculture of Henan, (10): 62.) [19] 曾秀存, 刘自刚, 史鹏辉, 等. 2014. 白菜型冬油菜铜锌超氧化物歧化酶(Cu/Zn-SOD)基因的克隆及其在低温条件下的表达[J]. 作物学报, 40(4): 636-643. (Zeng X C, Liu Z G, Shi P H, et al.2014. Cloning and expression analysis of copper and zinc superoxide dismutase (Cu/Zn-SOD) gene from Brassica campestris L[J]. Acta Agronomica Sinica, 40(4): 636-643.) [20] Alscher R G, Erturk N.2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J]. Journal of Experimental Botany, 53: 1331-1341. [21] Alam M M, Nahar K, Hasanuzzaman M, et al.2014. Exogenous jasmonic acid modulates the physiology, antioxidant defense and glyoxalase systems in imparting drought stress tolerance in different Brassica species[J]. Plant Biotechnology Reports, 8(3): 279-293. [22] Bouis H E, Welch R M.2010. Biofortification-a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south[J]. Crop science, 50: S20-S32. [23] Choi H W, Hwang B K.2012. The pepper extracellular peroxidase Ca-POD2 is required for salt, drought and oxidative stress tolerance as well as resistance to fungal pathogens[J]. Planta, 235(6): 1369-1382. [24] Chen J B, Yang J W, Zhang Z Y, et al.2013. Two P5CS genes from common bean exhibiting different tolerance to salt stress in transgenic Arabidopsis[J]. Journal of Genetics, 92(3): 461-469. [25] Diaz-Vivancos P, Faize M, Barba-Espin G, et al.2013. Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums[J]. Plant Biotechnology Journal, 11(8): 976-985. [26] Dashtmian P F, Hosseini M K, Esfahani M, et al.2014. Alleviating harmful effects of chilling stress on rice seedling via application of spermidine as seed priming factor[J]. African Journal of Agricultural Research, 9(18): 11. [27] Ding H, Lai J, Wu Q, et al.2015. Jasmonate complements the function of Arabidopsis lipoxygenase3 in salinity stress response[J]. Plant Science, 244: 1-7. [28] Elssa P, Swaleha T, Barik S R, et al.2017. Genome-wide association mapping reveals multiple QTLs governing tolerance response for seedling stage chilling stress in Indica rice[J]. Frontiers in Plant Science, 8: 552. [29] Faize M, Burgos L, Faize L, et al.2011. Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress[J]. Journal of Experimental Botany, 62(8): 2599-2613. [30] Feng X, Lai Z, Lin Y, et al.2015. Genome-wide identification and characterization of the superoxide dismutase gene family in Musa acuminate cv. Tianbaojiao (AAA group)[J]. BMC Genomics, 16(1): 823. [31] Gupta A S, Heinen J L, Holaday A S, et al.1993. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase[J]. Proceedings of the National Academy of Sciences of the USA, 90(4): 1629-1633. [32] Herouart D, Van Montagu M, Inze D, et al.1993. Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana[J]. Proceedings of the National Academy of Sciences of the USA, 90(7): 3108-3112. [33] Hodges D M, Delong J M, Forney C F, et al.1999. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds[J]. Planta, 207(6): 604-611. [34] Hur J, Jung K H, Lee C H, et al.2004. Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice[J]. Plant Science, 167(3): 417-426. [35] Hu J, Xie X J, Wang Z F, et al.Sand priming improves alfalfa germination under high-salt concentration stress[J]. Seed Science and Technology, 2006, 34(1): 199-204. [36] Hou Y, Meng K, Han Y, et al.2015. The persimmon 9-lipoxygenase gene DkLOX3 plays positive roles in both promoting senescence and enhancing tolerance to abiotic stress[J]. Frontiers in Plant Science, 6: 1073. [37] Hsu C, Hsu Y T.2019. Biochemical responses of rice roots to cold stress[J]. Botanical studies, 60(1): 14. [38] Llorente F, López-Cobollo R M, Catalá R, et al.2002. A novel cold-inducible gene from Arabidopsis, RCI3, encodes a peroxidase that constitutes a component for stress tolerance[J]. The Plant Journal, 32(1): 13-24. [39] Muhammad S, Mahmood A M, Heng S, et al.2018. Genome-wide identification of lipoxygenase gene family in cotton and functional characterization in response to abiotic stresses[J]. BMC Genomics, 19(1): 599. [40] Perl A, Perl-Treves R, Galili S, et al.1993. Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu, Zn superoxide dismutases[J]. Theoretical and applied genetics, 85(5): 568-576. [41] Rodríguez V M, Butrón A, Malvar R A, et al.2008. Quantitative trait loci for cold tolerance in the maize IBM population[J]. International Journal of Plant Sciences, 169(4): 551-556. [42] Su M, Li X, Ma X, et al.2011. Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment[J]. Plant Science, 181(6): 652-659. [43] Ullah A, Sun H, Hakim, et al.2017. A novel cotton WRKY-gene, GhWRKY6-like, improves salt tolerance by activating the ABA signalling pathway and scavenging of reactive oxygen species[J]. Plant Physiology, 162(4): 439-454. [44] Wu Y, Yang Z, How J, et al.2017. Overexpression of a peroxidase gene (AtPrx64) of Arabidopsis thaliana in tobacco improves plant’s tolerance to aluminum stress[J]. Plant Molecular Biology, 95(1): 157-168. [45] Zelicourt A D, Colcombet J, Hirt H, et al.2016. The Role of MAPK modules and ABA during abiotic stress signaling[J]. Trends in Plant Science, 21(8): 677-685.