Clone of STAG3 Gene and Its Expression and Localization in Yak (Bos grunniens) Testis with Different Ages
SHI Jun1,3, CHEN Wen-Li1,3, BAI Xu1,3, LI Jian-Fu1,3, YUAN Bao1,3, ZHAO Xing-Xu1,2,3, ZHANG Quan-Wei1,2,3,*
1 College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; 2 College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; 3 Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
Abstract:Stromal antigen 3 (STAG3), one component of adhesin complexes, plays important role in regulation of follicular development, premature ovarian failure and carcinogenesis in animals. However, its function and regulatory mechanisms are incompletely understood in yak (Bos grunniens). In the present study, the yak testicular tissues with different ages (2, 4, 6 and 8 years old) were collected. The coding sequence (CDS) of STAG3 gene was cloned using reverse transcription-PCR (RT-PCR). The interacted proteins and biological functions of STAG3 were predicted using STRING (functional protein association networks) and Gene Ontology (GO) procedures. Histomorphological structure of yak tissues was observed using hematoxylin-eosin (HE) staining. The localization and expression pattern analysis of STAG3 were evaluated using immunohistochemical (IHC) staining and qRT-PCR. The results showed that the CDS of yak STAG3 was 3 679 bp with a 1 659 bp open reading frame, and encoding 552 amino acids without transmembrane structure region. STAG3 might involve in the meiosis Ⅰ phase, synaptic re-combination and chromosome concentration. The STAG3 protein was widely expressed in testicular tissues, and were located mainly in primary spermatocyte and secondary spermatocyte. The highest expression level of STAG3 was presented in the yak testis of 2 years old, and was gradually decreased with ages. In conclusion, STAG3 was conservative in animal evolution, and widely expressed in the yak testises, which might play an important role in yak reproductive processes. This study provides basis for uncovering the function and mechanism of STAG3 in yak reproduction.
石军, 陈文丽, 白旭, 李建富, 袁宝, 赵兴绪, 张全伟. 牦牛STAG3基因克隆及其在不同年龄段牦牛睾丸中的表达定位[J]. 农业生物技术学报, 2024, 32(2): 344-354.
SHI Jun, CHEN Wen-Li, BAI Xu, LI Jian-Fu, YUAN Bao, ZHAO Xing-Xu, ZHANG Quan-Wei. Clone of STAG3 Gene and Its Expression and Localization in Yak (Bos grunniens) Testis with Different Ages. 农业生物技术学报, 2024, 32(2): 344-354.
[1] 葛少钦, 康现江, 刘桂荣, 等. 2008. 精子发生过程中的相关基因[J]. 遗传, 30(1): 3-12. (Ge S Q, Kang X J, Liu G R, et al.2008. Genes involved in spermatogenesis[J]. Hereditas, 30(1): 3-12.) [2] 李讨讨, 马友记, 赵兴绪, 等. 2018. Dazl基因在绵羊不同发育期睾丸组织中的表达与细胞定位[J]. 农业生物技术学报, 26(03): 421-428. (Li T T, Ma Y J, Zhao X X, et al.2018. Expression and cellular localization of Dazl gene in testis of sheep (Ovis aries) at different developmental stages[J]. Journal of Agricultural Biotechnology, 26(03): 421-428.) [3] 刘敏清. 2021. 牦牛AQP1和AQP11基因的克隆及其在不同发育阶段睾丸中的表达[D]. 硕士学位论文, 甘肃农业大学, 导师: 余四九. pp. 15-18. (Liu M.2021. Yak (Bos grunniens) AQP1 and AQP11 gene cloning and their expression in the testes at different developmental stages[D]. Thesis for M.S., Gansu Agricultural University, Supervisor: Yu S J. pp. 15-18.) [4] 马海涛, 牛长敏, 郭佳倩, 等. 2016. 精子发生减数分裂过程中相关基因的研究进展[J]. 生殖医学杂志, 25(09): 865-869. (Ma H T, Niu C M, Guo J Q, et al.2016. Progress in the genes regulating meiosis during spermatogenesis[J]. Journal of Reproductive Medicine, 25(09): 865-869.) [5] 马悦, 樊江峰, 何翃闳, 等. 2020. 牦牛胎盘组织细胞凋亡相关蛋白的表达[J]. 农业生物技术学报, 28(01): 72-83. (Ma Y, Fan J F, He H H, et al.2020. Expression of apoptosis-related proteins in placenta tissue of yak (Bos grunniens)[J]. Journal of Agricultural Biotechnology, 28(01): 72-83.) [6] 毛宁, 王嘉福, 张福平, 等. 2018. 香猪卵巢StAR和CYP11A1基因的差异表达研究[J]. 中国畜牧兽医, 45(5): 1137-1144. (Mao N, Wang J F, Zhang F P, et al.2018. Study on differential expression of StAR and CYP11A1 genes in Xiang Pig ovary[J]. China Animal Husbandry & Veterinary Medicine, 45(5): 1137-1144.) [7] 欧阳宏佳, 孙敬帅, 江丹莉, 等. 2020. 水禽StAR基因克隆、表达及其对睾丸发育的影响[J]. 畜牧兽医学报, 51(12): 3013-3022. (OuYang H J, Sun J S, Jiang D L, et al.2020. Cloning and expression of saterfowl StAR gene and lts effect on testicular development[J]. Acta Veterinaria et Zootechnica Sinica, 51(12): 3013-3022.) [8] 彭丽英, 陈秀敏, 付志红, 等. 2014. 卵丘细胞STAG3基因表达的年龄相关改变及与胚胎发育的关系[J]. 中国优生与遗传杂志, 22(01): 90-92. (Pen L Y, Chen X M, Fu Z H, et al.2014. The age-related change in the expression of STAG3 in cumulus cell and its relation to the development of embryo[J]. Chinese Journal of Birth Health & Heredity, 22(01): 90-92.) [9] 王玺博, 颜宏利, 卢大儒. 2022. Tex基因家族成员对精子发生调控功能的研究进展[J]. 发育医学电子杂志, 10(02): 140-145. (Wang X B, Yan H L,Lu D R.2022. Research progress on the regulation function of Tex gene family members on spermatogenesis[J]. Journal Developmental Medicine (Electronic Version), 10(02): 140-145.) [10] 袁钰洁, 周婧雯, 殷实, 等. 2022. 不同发育阶段牦牛睾丸组织miRNA的分析及鉴定[J].中国兽医学报, 42(01): 165-174. (Yuan Y J, Zhou J W, Ying S, et al.2022. Analysis and identification of miRNA in yak testis at different developmental stages[J]. Chinese Journal of Veterinary Science, 42(01): 165-174.) [11] 朱俊峰. 2013. 牦牛生精小管形态发育特征及细胞外基质相关蛋白分布[D]. 硕士学位论文, 甘肃农业大学, 导师: 袁莉刚, pp. 19-29. (Zhu J F.2013. Seminiferous tubule morphology and extracellular matrix protein distribution in Yak (Bos grunniens) testis[D]. Thesis for M.S., Gansu Agricultural University, Supervisor: Yuan L G, pp. 19-29.) [12] 朱翔. 2011. 牛SYCP3基因的克隆、表达与启动子区甲基化分析[D]. 硕士学位论文, 南京农业大学, 导师: 李齐发, pp. 11-19. (Zhu X.2011. Molecular characterization, expression, and promoter methylation status of the bovine synaptonemal complex protein 3 gene[D]. Thesis for M.S., Nanjing Agricultural University, Supervisor: Li Q F. pp. 11-19.) [13] Almagro A J, Tsirigos K D, Sonderby C K, et al.2019. SignalP 5.0 improves signal peptide predictions using deep neural networks[J]. Nature Biotechnology, 37(4): 420-423. [14] Bai X, Wang X, Lin T, et al.2022. Toll-like receptor 2 is associated with the immune response, apoptosis, and angiogenesis in the mammary glands of dairy cows with clinical mastitis[J]. International Journal of Molecular Sciences, 23(18): 10717. [15] Blom N, Sicheritz-Pontén T, Gupta R, et al.2004. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence[J]. Proteomics, 4(6): 1633-1649. [16] Colombo R, Pontoglio A, Bini M.2017. A STAG3 missense mutation in two sisters with primary ovarian insufficiency[J]. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 216: 269-271. [17] Dai L, Zhang Q, Shi J, et al.2021. The distribution, expression patterns and functional analysis of NR1D1 and NR4A2 in the reproductive axis tissues of the male Tianzhu White Yak[J]. Animals (Basel), 11(11): 3117. [18] Demain L, Boetje E, Edgerley J J, et al.2021. Biallelic loss of function variants in STAG3 result in primary ovarian insufficiency[J]. Reprod Biomed Online, 43(5): 899-902. [19] Geourjon C, Deléage G.1994. SOPM: A self-optimized method for protein secondary structure prediction[J]. Protein Engineering, Design & Selection, 7(2): 157-164. [20] Gómez-Rojas S, Aristizábal-Duque J E, Muñoz-Fernández L F, et al.2022. New STAG3 gene variant as a cause of premature ovarian insufficiency[J]. Rev Colomb Obstet Ginecol, 73(1): 142-148. [21] Hall B G.2013. Building phylogenetic trees from molecular data with MEGA[J]. Molecular Biology and Evolution, 30(5): 1229-1235. [22] Hopkins J, Hwang G, Jacob J, et al.2014. Meiosis-specific cohesin component, STAG3 is essential for maintaining centromere chromatid cohesion, and required for DNA repair and synapsis between homologous chromosomes[J]. PLOS Genetics, 10(7): e1004413. [23] Houmard B, Small C, Yang L, et al.2009. Global gene expression in the human fetal testis and ovary[J]. Biology of Reproduction, 81(2): 438-443. [24] Ison J, Kalas M, Jonassen I, et al.2013. EDAM: An ontology of bioinformatics operations, types of data and identifiers, topics and formats[J]. Bioinformatics, 29(10): 1325-1332. [25] Kalejs M, Ivanov A, Plakhins G, et al.2006. Upregulation of meiosis-specific genes in lymphoma cell lines following genotoxic insult and induction of mitotic catastrophe[J]. BMC Cancer, 6: 6. [26] Krogh A, Larsson B, von Heijne G, et al.2001. Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes[J]. Journal of Molecular Biology, 305(3): 567-580. [27] Li S, Yue Z, Tanaka T U.2017. Smc3 deacetylation by Hos1 facilitates efficient dissolution of sister chromatid cohesion during early anaphase[J]. Molecular Cell, 68(3):605-614. [28] Link J, Jantsch V.2019. Meiotic chromosomes in motion: A perspective from mus musculus and caenorhabditis elegans[J]. Chromosoma, 128(3): 317-330. [29] Riera-Escamilla A, Enguita-Marruedo A, Moreno-Mendoza D, et al.2020. Corrigendum. Sequencing of a 'mouse azoospermia' gene panel in azoospermic men: Identification of RNF212 and STAG3 mutations as novel genetic causes of meiotic arrest[J]. Human Reproduction, 35(8): 1945-1946. [30] Schlatt S, Ehmcke J.2014. Regulation of spermatogenesis: An evolutionary biologist's perspective[J]. Seminars in Cell & Developmental Biology, 29: 2-16. [31] Smith L B, Walker W H.2014. The regulation of spermatogenesis by androgens[J]. Seminars in Cell & Developmental Biology, 30: 2-13. [32] Szklarczyk D, Gable A L, Nastou K C, et al.2021. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Research, 49(D1): D605-D612. [33] van der Bijl N, Rpke A, Biswas U, et al.2019. Mutations in the stromal antigen 3 (STAG3) gene cause male infertility due to meiotic arrest[J]. Human Reproduction, 34(11): 2112-2119. [34] Walker J M, Gasteiger E, Hoogland C, et al.2005. The Proteomics Protocols Handbook[M]. Humana Press.. America. pp. 571-607. [35] Walker W H.2010. Non-classical actions of testosterone and spermatogenesis[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1546): 1557-1569. [36] Ward A, Hopkins J, Mckay M, et al.2016. Genetic interactions between the meiosis-specific cohesin components, STAG3, REC8, and RAD21L[J]. G3 (Bethesda), 6(6): 1713-1724. [37] Waterhouse A, Bertoni M, Bienert S, et al.2018. SWISS-MODEL: Homology modelling of protein structures and complexes[J]. Nucleic Acids Research, 46(W1): W296-W303. [38] Xiao W J, He W B, Zhang Y X, et al.2019. In-Frame variants in STAG3 gene cause premature ovarian insufficiency[J]. Frontiers in Genetics, 10: 1016. [39] Xie J, Li L.2021. Comments on the utilization of Mann-Whitney U test and Kaplan-Meier method[J]. Journal of Gynecologic Oncology, 32(3): e46. [40] Yue F, Cheng Y, Breschi A, et al.2014. A comparative encyclopedia of DNA elements in the mouse genome[J]. Nature, 515(7527): 355-364. [41] Zhang Q, Bai X, Shi J, et al.2022. DIA proteomics identified the potential targets associated with angiogenesis in the mammary glands of dairy cows with hemorrhagic mastitis[J]. Frontiers in Veterinary Science, 9: 980963. [42] Zhang Q, Wang Q, Gong J, et al.2018. Yak IGF2 promotes fibroblast proliferation via suppression of IGF1R and PI3KCG expression[J]. Genes (Basel), 9(3): 169.