Role of Pseudoenzymes in Plant Development and Stress Response
LI Shi-Qi, ZHU Zhu-Jun, RU Lei*
Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A& F University, Hangzhou 311300, China
Abstract:Pseudoenzymes are proteins that have sequence homology with enzyme families but are proven or predicted to lack enzyme activity due to mutations in otherwise conserved catalytic amino acids. However, pseudoenzymes may be involved in promoting or inhibiting the activity of enzymes, competing with active enzymes for substrates, regulating signal pathways, or serving as protein scaffolds to form protein complex, etc. Although pseudoenzymes have been extensively studied in the medical field, research on the role of pseudoenzymes in plants is still scarce. Recent studies have shown that pseudoenzymes play important roles in stress response, growth, and development in plant. In this paper, multidimensional introduction to pseudoenzymes was provided, including their definition, identification methods, evolutionary processes, and biological roles in plants. Furthermore, the potential roles of pseudoenzymes in plant development regulation were also discussed. This review provides new insights for plant developmental regulation by using pesudoenzymes.
李施祺, 朱祝军, 茹磊. 假酶在植物生长发育和逆境胁迫中的作用[J]. 农业生物技术学报, 2024, 32(3): 679-690.
LI Shi-Qi, ZHU Zhu-Jun, RU Lei. Role of Pseudoenzymes in Plant Development and Stress Response. 农业生物技术学报, 2024, 32(3): 679-690.
[1] Abudukelimu A, Mondeel T, Barberis M, et al.2017. Learning to read and write in evolution: From static pseudoenzymes and pseudosignalers to dynamic gear shifters[J]. Biochemical Society Transactions, 45(3): 635-652. [2] Adamiec M, Misztal L, Kasprowicz-Maluski A, et al.2020. EGY3: Homologue of S2P protease located in chloroplasts[J]. Plant Biology (Stuttg), 22(4): 735-743. [3] Adrain C, Freeman M.2012. New lives for old: Evolution of pseudoenzyme function illustrated by iRhoms[J]. Nature Reviews Molecular Cell Biology, 13(8): 489-498. [4] Adrain C, Strisovsky K, Zettl M, et al.2011. Mammalian EGF receptor activation by the rhomboid protease RHBDL2[J]. EMBO Reports, 12(5): 421-427. [5] Adrain C, Zettl M, Christova Y, et al.2012. Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE[J]. Science, 335(6065): 225-228. [6] Babon J J, Lucet I S, Murphy J M, et al.2014. The molecular regulation of Janus kinase (JAK) activation[J]. Biochemical Journal, 462(1): 1-13. [7] Barleben L, Panjikar S, Ruppert M, et al.2007. Molecular architecture of strictosidine glucosidase: The gateway to the biosynthesis of the monoterpenoid indole alkaloid family[J]. Plant Cell, 19(9): 2886-2897. [8] Black M H, Gradowski M, Pawlowski K, et al.2022. Methods for discovering catalytic activities for pseudokinases[J]. Methods in Enzymology, 667: 575-610. [9] Boudeau J, Miranda-Saavedra D, Barton G J, et al.2006. Emerging roles of pseudokinases[J]. Trends in Cell Biology, 16(9): 443-452. [10] Brennan D F, Dar A C, Hertz N T, et al.2011. A Raf-induced allosteric transition of KSR stimulates phosphorylation of MEK[J]. Nature, 472(7343): 366-369. [11] Carqueijeiro I, Koudounas K, Duge de Bernonville T, et al.2021. Alternative splicing creates a pseudo-strictosidine beta-d-glucosidase modulating alkaloid synthesis in Catharanthus roseus[J]. Plant Physiology, 185(3): 836-856. [12] Castilho B A, Shanmugam R, Silva R C, et al.2014. Keeping the eIF2 alpha kinase Gcn2 in check[J]. Acta Biochimica et Biophysica Sinica, 1843(9): 1948-1968. [13] Cheng K C, Klancer R, Singson A, et al.2009. Regulation of MBK-2/DYRK by CDK-1 and the pseudophosphatases EGG-4 and EGG-5 during the oocyte-to-embryo transition[J]. Cell, 139(3): 560-572. [14] Christie M, Boland A, Huntzinger E, et al.2013. Structure of the PAN3 pseudokinase reveals the basis for interactions with the PAN2 deadenylase and the GW182 proteins[J]. Molecular Cell, 51(3): 360-373. [15] Cravens A, Payne J, Smolke C D.2019. Synthetic biology strategies for microbial biosynthesis of plant natural products[J]. Nature Communications, 10(1): 2142. [16] Das S, Dawson N L, Orengo C A.2015. Diversity in protein domain superfamilies[J]. Current Opinion in Genetics and Development, 35: 40-49. [17] Doucet J, Lee H K, Udugama N, et al.2019. Investigations into a putative role for the novel BRASSIKIN pseudokinases in compatible pollen-stigma interactions in Arabidopsis thaliana[J]. BMC Biology , 19(1): 549. [18] Eyers P A, Murphy J M.2013. Dawn of the dead: Protein pseudokinases signal new adventures in cell biology[J]. Biochemical Society Transactions, 41(4): 969-974. [19] Eyers P A, Murphy J M.2016. The evolving world of pseudoenzymes: Proteins, prejudice and zombies[J]. BMC Biology, 14(1): 98. [20] Faivre S, Djelloul S, Raymond E.2006. New paradigms in anticancer therapy: Targeting multiple signaling pathways with kinase inhibitors[J]. Seminars in Oncology, 33(4): 407-420. [21] Freeman M.2008. Rhomboid proteases and their biological functions[J]. Annual Review of Genetics, 42: 191-210. [22] Freeman M.2014. The rhomboid-like superfamily: Molecular mechanisms and biological roles[J]. Annual Review of Cell and Developmental Biology, 30: 235-254. [23] Fulton D C, Stettler M, Mettler T, et al.2008. Beta-AMYLASE4, a noncatalytic protein required for starch breakdown, acts upstream of three active beta-amylases in Arabidopsis chloroplasts[J]. Plant Cell, 20(4): 1040-1058. [24] Goetz M, Godt D E, Guivarc'h A, et al.2001. Induction of male sterility in plants by metabolic engineering of the carbohydrate supply[J]. Proceedings of The National Academy of Sciences of The USA, 98(11): 6522-6527. [25] Govindan J A, Greenstein D.2007. Embryogenesis: Anchors away![J]. Current Biology, 17(20): R890-R892. [26] Hinton S D.2019. The role of pseudophosphatases as signaling regulators[J]. Biochimica et Biophysica Acta - Molecular Cell Research, 1866(1): 167-174. [27] Holliday G L, Mitchell J B, Thornton J M.2009. Understanding the functional roles of amino acid residues in enzyme catalysis[J]. Journal of Molecular Biology, 390(3): 560-577. [28] Jacobsen A V, Murphy J M.2017. The secret life of kinases: Insights into non-catalytic signalling functions from pseudokinases[J]. Biochemical Society Transactions, 45(3): 665-681. [29] Jeffery C J.1999. Moonlighting proteins[J]. Trends in Biochemical Sciences, 24(1): 8-11. [30] Jeffery C J.2004. Molecular mechanisms for multitasking: Recent crystal structures of moonlighting proteins[J]. Current Opinion in Structural Biology, 14(6): 663-668. [31] Jeffery C J.2017. Moonlighting proteins - nature's Swiss army knives[J]. Scientific Programming, 100(4): 363-373. [32] Jeffery C J.2019. The demise of catalysis, but new functions arise: Pseudoenzymes as the phoenixes of the protein world[J]. Biochemical Society Transactions, 47(1): 371-379. [33] Jeffery C J.2020. Enzymes, pseudoenzymes, and moonlighting proteins: Diversity of function in protein superfamilies[J]. FEBS Journal, 287(19): 4141-4149. [34] Kawagoe T, Sato S, Matsushita K, et al.2008. Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2[J]. Nature Immunology, 9(6): 684-691. [35] Kwon A, Scott S, Taujale R, et al.2019. Tracing the origin and evolution of pseudokinases across the tree of life[J]. Science Signaling, 12(578): eaav3810. [36] Le Roy K, Vergauwen R, Struyf T, et al.2013. Understanding the role of defective invertases in plants: Tobacco Nin88 fails to degrade sucrose[J]. Plant Physiology, 161(4): 1670-1681. [37] Lechtenberg B C, Rajput A, Sanishvili R, et al.2016. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation[J]. Nature, 529(7587): 546-550. [38] Lee M Y, Nam K H, Choi K C.2016. iRhoms; its functions and essential roles[J]. Biomolecules and Therapeutics, 24(2): 109-114. [39] Leonhard K, Herrmann J M, Stuart R A, et al.1996. AAA proteases with catalytic sites on opposite membrane surfaces comprise a proteolytic system for the ATP-dependent degradation of inner membrane proteins in mitochondria[J]. EMBO Journal, 15(16): 4218-4229. [40] Leuendorf J E, Mooney S L, Chen L, et al.2014. Arabidopsis thaliana PDX1.2 is critical for embryo development and heat shock tolerance[J]. Planta, 240(1): 137-146. [41] Li J, Francisco P, Zhou W, et al.2009. Catalytically-inactive beta-amylase BAM4 required for starch breakdown in Arabidopsis leaves is a starch-binding-protein[J]. Archives of Biochemistry and Biophysics, 489(1-2): 92-98. [42] Manning G, Whyte D B, Martinez R, et al.2002. The protein kinase complement of the human genome[J]. Science, 298(5600): 1912-1934. [43] McGinty R K, Henrici R C, Tan S.2014. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome[J]. Nature, 514(7524): 591-596. [44] Mishra L S, Mishra S, Caddell D F, et al.2021. The Plastid-localized AtFtsHi3 pseudo-protease of Arabidopsis thaliana has an impact on plant growth and drought tolerance[J]. Front Plant Science, 12: 694727. [45] Mohan M L, Naga Prasad S V.2017. Scaffolding function of PI3Kgamma emerges from enzyme's shadow[J]. Journal of Molecular Biology, 429(6): 763-772. [46] Monroe J D, Storm A R.2018. Review: The Arabidopsis beta-amylase (BAM) gene family: Diversity of form and function[J]. Plant Science, 276, 163-170. [47] Murphy J M, Czabotar P E, Hildebrand J M, et al.2013. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism[J]. Immunity, 39(3): 443-453. [48] Murphy J M, Mace P D, Eyers P A.2017. Live and let die: Insights into pseudoenzyme mechanisms from structure[J]. Current Opinion in Structural Biology, 47: 95-104. [49] Novikova I V, Zhou M, Du C, et al.2021. Tunable heteroassembly of a plant pseudoenzyme-enzyme complex[J]. ACS Chemical Biology, 16(11): 2315-2325. [50] Paul A, Srinivasan N.2020. Genome-wide and structural analyses of pseudokinases encoded in the genome of Arabidopsis thaliana provide functional insights[J]. Proteins, 88(12): 1620-1638. [51] Petrie E J, Hildebrand J M, Murphy J M.2017. Insane in the membrane: A structural perspective of MLKL function in necroptosis[J]. Immunology Cell Biology, 95(2): 152-159. [52] Pils B, Schultz J.2004. Inactive enzyme-homologues find new function in regulatory processes[J]. Journal of Molecular Biology, 340(3): 399-404. [53] Ranok A, Wongsantichon J, Robinson R C, et al.2015. Structural and thermodynamic insights into chitooligosaccharide binding to human cartilage chitinase 3-like protein 2 (CHI3L2 or YKL-39)[J]. Journal of Biological Chemistry, 290(5): 2617-2629. [54] Reiterer V, Eyers P A, Farhan H.2014. Day of the dead: Pseudokinases and pseudophosphatases in physiology and disease[J]. Trends in Cell Biology, 24(9): 489-505. [55] Reiterer V, Fey D, Kolch W, et al.2013. Pseudophosphatase STYX modulates cell-fate decisions and cell migration by spatiotemporal regulation of ERK1/2[J]. Proceedings of the National Academy of Sciences of the USA, 110(31): E2934-E2943. [56] Reiterer V, Pawlowski K, Desrochers G, et al.2020. The dead phosphatases society: A review of the emerging roles of pseudophosphatases[J]. FEBS Journal, 287(19): 4198-4220. [57] Reiterer V, Pawlowski K, Farhan H.2017. STYX: A versatile pseudophosphatase[J]. Biochemical Society Transactions, 45(2): 449-456. [58] Ribeiro A J M, Das S, Dawson N, et al.2019. Emerging concepts in pseudoenzyme classification, evolution, and signaling[J]. Science Signaling, 12(594): eaat9797. [59] Ribeiro A J M, Holliday G L, Furnham N, et al.2018. Mechanism and Catalytic Site Atlas (M-CSA): A database of enzyme reaction mechanisms and active sites[J]. Nucleic Acids Research, 46(D1): D618-D623. [60] Rodriguez-Saavedra C, Morgado-Martinez L E, Burgos-Palacios A, et al.2021. Moonlighting proteins: The case of the hexokinases[J]. Frontiers in Molecular Biosciences, 8: 701975. [61] Sokolenko A, Pojidaeva E, Zinchenko V, et al.2002. The gene complement for proteolysis in the cyanobacterium Synechocystis sp. PCC 6803 and Arabidopsis thaliana chloroplasts[J]. Current Genetics, 41(5): 291-310. [62] Stavrinides A, Tatsis E C, Caputi L, et al.2016. Structural investigation of heteroyohimbine alkaloid synthesis reveals active site elements that control stereoselectivity[J]. Nature Communications, 7: 12116. [63] Stitzel M L, Cheng K C, Seydoux G.2007. Regulation of MBK-2/Dyrk kinase by dynamic cortical anchoring during the oocyte-to-zygote transition[J]. Current Biology, 17(18): 1545-1554. [64] Sun Z, Zang Y, Zhou L, et al.2021. A tomato receptor-like cytoplasmic kinase, SlZRK1, acts as a negative regulator in wound-induced jasmonic acid accumulation and insect resistance[J]. Journal of Experimental Botany, 72(20): 7285-7300. [65] Tambasco-Studart M, Titiz O, Raschle T, et al.2005. Vitamin B6 biosynthesis in higher plants[J]. Proceedings of the National Academy of Sciences of the USA, 102(38): 13687-13692. [66] Tonks N K.2013. Protein tyrosine phosphatases--from housekeeping enzymes to master regulators of signal transduction[J]. FEBS Journal, 280(2): 346-378. [67] Trempe J F, Sauve V, Grenier K, et al.2013. Structure of parkin reveals mechanisms for ubiquitin ligase activation[J]. Science, 340(6139): 1451-1455. [68] Urban S, Lee J R, Freeman M.2001. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases[J]. Cell, 107(2): 173-182. [69] van Heeswijk W C, Hoving S, Molenaar D, et al.1996. An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli[J]. Molecular Microbiology, 21(1): 133-146. [70] van Heeswijk W C, Westerhoff H V, Boogerd F C.2013. Nitrogen assimilation in Escherichia coli: Putting molecular data into a systems perspective[J]. Microbiology and Molecular Biology Reviews, 77(4): 628-695. [71] Wishart M J, Denu J M, Williams J A, et al.1995. A single mutation converts a novel phosphotyrosine binding domain into a dual-specificity phosphatase[J]. Journal of Biological Chemistry, 270(45): 26782-26785. [72] Wishart M J, Dixon J E.2002. The archetype STYX/dead-phosphatase complexes with a spermatid mRNA-binding protein and is essential for normal sperm production[J]. Proceedings of the National Academy of Sciences of the USA, 99(4): 2112-2117. [73] Xiang Y, Song B, Nee G, et al.2016. Sequence polymorphisms at the REDUCED DORMANCY5 pseudophosphatase underlie natural variation in Arabidopsis dormancy[J]. Plant Physiology, 171(4): 2659-2670. [74] Yamaji S, Suzuki A, Sugiyama Y, et al.2001. A novel integrin-linked kinase-binding protein, affixin, is involved in the early stage of cell-substrate interaction[J]. Journal of Cell Biology, 153(6): 1251-1264. [75] Yu X, Zhang W, Zhang Y, et al.2019. The roles of methyl jasmonate to stress in plants[J]. Functional Plant Biology, 46(3): 197-212. [76] Zaru R, Magrane M, Orchard S, et al.2020. Challenges in the annotation of pseudoenzymes in databases: The UniProtKB approach[J]. FEBS Journal, 287(19): 4114-4127. [77] Zhuang Y, Wei M, Ling C, et al.2021. EGY3 mediates chloroplastic ROS homeostasis and promotes retrograde signaling in response to salt stress in Arabidopsis[J]. Cell Reports, 36(2): 109384.