Effects of Forest Canopy Density and Litter Manipulation on Corydalis yanhusuo Growth and Soil Enzyme Stoichiometry
ZHANG Wen-Zhuo1, ZHANG Qian-Qian1, YU Ye-Fei2, CHI Xiao-Li1, HE An-Guo2, WANG Yu-Qi1, LYU Qiang-Feng2, LI Yong-Chun1,*
1 College of Environmental and Resource Sciences/State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; 2 Dapanshan National Nature Reserve Administration of Zhejiang Province, Panan 322300, China
Abstract:Canopy density is the main factor affecting herbaceous plant growth because it leads to insufficient light, thick litter layer, and gives allelopathy effect. The main objective of this study was to explore the canopy density (low, medium, and high) and litter effects on the growth of C. yanhusuo with the restriction of soil enzyme stoichiometry. Results revealed that low canopy density of Cunninghamia lanceolata significantly increased height (24% to 27%), SPAD (soil and plant analyzer development) value (11% to 33%), net photosynthetic rate (28% to 39%), stomatal conductance (28% to 35%) of C. yanhusuo. Also, low canopy density increased the intercellular carbon dioxide concentration (10% to 24%) in C. yanhusuo plants. Although, litter manipulation had no significant impacts on growth of C. yanhusuo. With low canopy density, litter retention significantly increased the content of soil-soluble organic nitrogen (N) (11% to 21%), and enzyme activity of β-1,4-glucosidase (BG), β-1,4-n-acetylglucosaminidase (NAG) and leucine aminopeptidase (LAP). Canopy density, litter manipulation and their interaction showed significant effects on values of SPAD, soil C, N, phosphorus (P) content and related enzymes. The interaction between canopy density and litter had significant effects on plant height and SPAD value (P<0.01), which had a significant effect on the soil C, N and P content, and had a significant effect on the soil BG, NAG, LAP, and acid phosphatase (AP) activity (P<0.01). Microbial P limitation was demonstrated among all treatments via BG/(LAP+NAG) and (LAP+NAG)/AP, which indicated that the soil lacked P for microorganisms availability. In litter retention treatment, the soil BG/AP ratio decreased with increasing canopy density, and suggested that reducing canopy density and retaining litter could alleviate the restriction of soil phosphorus. It was evident that there was significant positive correlation between soil BG/AP and plants growth parameters. The low canopy density with litter retention significantly improved the soil enzyme activities and phosphorus supply that increased the growth of C. yanhusuo. This study could possibly provide the theoretical basis to explore the habitat suitability of C. yanhusuo and other herbaceous wild plants endangered.
[1] 鲍士旦. 2000. 土壤农化分析[M]. 中国农业出版社, 北京. pp. 264-270. (Bao S D.2000. Soil Agrochemical Analysis [M]. China Agriculture Press, Beijing, China, pp. 264-270.) [2] 陈超, 金则新, 袁梦, 等. 2022. 不同光照强度下濒危植物景宁木兰幼苗光合特性的季节变化[J]. 浙江农林大学学报, 39(05): 950-959. (Chen C, Jin Z X, Yuan M, et al.2022. Seasonal changes in photosynthetic characteristics of endangered plant Magnolia magnolia under different light intensities[J]. Journal of Zhejiang A&F University, 39(05): 950-959.) [3] 陈金林, 潘根兴. 2022. 杉林土壤中磷的固定作用及其抑制因素[J]. 生态学杂志, 12(05): 22-25. (Chen J L, Pan G X.2022. Fixation of phosphorus in soil of Chinese fir forest and its inhibiting factors[J]. Chinese Journal of Ecology, 12(05): 22-25.) [4] 崔宁洁, 张丹桔, 刘洋, 等. 2014. 马尾松人工林不同大小林窗植物多样性及其季节动态[J]. 植物生态学报, 38(05): 477-490. (Cui N J, Zhang D J, Liu Y, et al.2014. Plant diversity and seasonal dynamics in different gaps of Pinus massoniana plantation[J]. Journal of Plant Ecology, 38(05): 477-490.) [5] 黄智军, 刘青青, 颜耀, 等. 2021. 不同郁闭度马尾松林土壤元素生态化学计量特征[J]. 森林与环境学报, 41(05): 456-463. (Huang Z J, Liu Q Q, Yan Y, et al.2021. Ecological stoichiometry of soil elements in Pinus massoniana forest with different canopy density[J]. Journal of Forestry and Environment, 41(05): 456-463.) [6] 李浩铭, 余著成, 陈卓, 等. 2021. 光照强度对伯乐树幼苗生长及相关生理指标的影响[J]. 西南林业大学学报(自然科学), 41(03): 23-30. (Li H M, Yu Z C, Chen Z, et al.2021. Effects of light intensity on seedling growth and related physiological indexes of Bologna sinensis[J]. Journal of Southwest Forestry University (Natural Science), 41(03): 23-30.) [7] 李强, 漆昊, 何国兴, 等. 2022. 东祁连山高寒草甸土壤酶活性及其化学计量特征对海拔和坡向的响应[J]. 水土保持学报, 36(04): 357-364. (Li Q, Qi H, He G X, et al.2022. Response of soil enzyme activities and stoichiometric characteristics to altitude and slope aspect in alpine meadow of Eastern Qilian Mountains[J]. Journal of Soil and Water Conservation, 36(04): 357-364.) [8] 李伟成, 盛海燕, 杨慧敏, 等. 2019. 延胡索根际土壤细菌多样性与结构对毛竹林隙面积的响应[J]. 生态学杂志, 38(06): 1716-1724. (Li W C, Sheng H Y, Yang H M, et al.2019. Response of rhizosphere soil bacterial diversity and structure to gap area of Phyllostachys moso[J]. Chinese Journal of Ecology, 38(06): 1716-1724.) [9] 李臻, 梁月明, 潘复静, 等. 2021. 不同林龄马尾松人工林土壤酶活性及其生态化学计量特征[J]. 桂林理工大学学报, 41(01): 210-217. (Li Z, Liang Y M, Pan F J, et al.2021. Soil enzyme activities and ecological stoichiometry characteristics of Pinus massoniana plantation at different ages[J]. Journal of Guilin University of Technology, 41(01): 210-217.) [10] 梁薇薇, 陈立新, 段文标, 等. 2021. 酚酸物质对红松种子萌发及苗木生长和生理特性的影响[J]. 生态学报, 41(04): 1583-1592. (Liang W W, Chen L X, Duan W B, et al.2021. Effects of phenolic acids on seed germination, seedling growth and physiological characteristics of Red pine[J]. Acta Ecologica Sinica, 41(04): 1583-1592.) [11] 刘芳黎, 张越, 吴富勤, 等. 2017. 自毒和森林凋落物化感作用对极小种群野生植物大树杜鹃种子萌发的影响[J]. 西北植物学报, 37(06): 1189-1195. (Liu F L, Zhang Y, Wu F Q, et al.2017. Effects of self-toxicity and forest litter allelosis on seed germination of wild plant Rhododendron tree with minimal population[J]. Acta Botanica Boreali-Occidents Sinica, 37(06): 1189-1195.) [12] 刘俏, 刘仁, 张绿水, 等. 2022. 施肥与光照对枫香栽培土壤酶活性及其化学计量比的影响[J]. 江西农业大学学报, 44(01): 127-138. (Liu Q, Liu R, Zhang L S, et al.2022. Effects of fertilization and light on soil enzyme activities and stoichiometric ratios of Sweetgum ambrosia Formosa[J]. Journal of Jiangxi Agricultural University, 44(01): 127-138.) [13] 刘仁, 陈伏生, 方向民, 等. 2020. 凋落物添加和移除对杉木人工林土壤水解酶活性及其化学计量比的影响[J]. 生态学报, 40(16): 5739-5750. (Liu R, Chen F S, Fang X M, et al.2020. Effects of litter addition and removal on soil hydrolase activity and stoichiometric ratio in Chinese fir plantation[J]. Acta Ecologica Sinica, 40(16): 5739-5750.) [14] 刘旭军, 程小琴, 田慧霞, 等. 2018. 不同间伐强度下华北落叶松人工林土壤磷组分特征及其影响因素[J]. 应用生态学报, 29(12): 3941-3948. (Liu X J, Cheng X Q, Tian H X, et al.2018. Characteristics and influencing factors of soil phosphorus composition in Larix Huabei plantation under different thinning intensities[J]. Chinese Journal of Applied Ecology, 29(12): 3941-3948.) [15] 刘焱, 黄小兰, 钟志松, 等. 2022. 土壤有效元素含量与延胡索品质的相关性研究[J]. 生态科学, 41(02): 108-113. (Liu Y, Huang X L, Zhong Z S, et al.2022. Correlation between soil available elements and Corydalis corydalis quality[J]. Ecological Science, 41(02): 108-113.) [16] 刘延惠, 姜霞, 丁访军, 等. 2017. 头花蓼光合特性及叶绿素荧光对林下光照生境变化的响应[J]. 水土保持学报, 31(06): 345-352. (Liu Y H, Jiang X, Ding F J, et al.2017. Photosynthetic characteristics and chlorophyll fluorescence of Polygonum polygonum head in response to changes in understory light habitat[J]. Journal of Soil and Water Conservation, 31(06): 345-352.) [17] 吕晋慧, 王玄, 冯雁梦, 等. 2012. 遮荫对金莲花光合特性和叶片解剖特征的影响[J]. 生态学报, 32(19): 6033-6043. (Lv J H, Wang X, Feng Y M, et al.2012. Effects of shading on photosynthetic characteristics and leaf anatomical characteristics of Auricularia japonica[J]. Acta Ecologica Sinica, 32(19): 6033-6043.) [18] 吕钦杨, 韦献东, 陈鑫, 等. 2020. 八角林不同郁闭度对金花茶和山茶生长及光合特性的影响[J]. 热带作物学报, 41(06): 1138-1144. (Lv Q Y, Wei X D, Chen X, et al.2020. Effects of different canopy density on growth and photosynthetic characteristics of Camellia japonica and Camellia japonica[J]. Journal of Tropical Crops, 41(06): 1138-1144.) [19] 陆宇明, 许恩兰, 吴东梅, 等. 2021. 凋落物双倍添加和移除对米槠林土壤水解酶活性及其化学计量比的影响[J]. 水土保持学报, 35(04): 313-320. (Lu Y M, Xu E L, Wu D M, et al.2021. Effects of double addition and removal of litter on soil hydrolase activity and stoichiometric ratio in Castanopsis carlesii forest[J]. Journal of Soil and Water Conservation, 35(04): 313-320.) [20] 盛海燕, 李伟成. 2018. 延胡索光合与生长可塑性对光照的响应[J]. 生态科学, 37(06): 168-174. (Sheng H Y, Li W C,2018. Photosynthesis and growth plasticity of Corydalis yancorydalis in response to light[J]. Ecological Science, 37(06): 168-174.) [21] 尚三娟, 王义婧, 王楠, 等. 2020. 光照强度对紫斑牡丹生理及生长特性的影响[J]. 生态学杂志, 39(09): 2963-2973. (Shang S J, Wang Y J, Wang N, et al.2020. Effects of light intensity on physiological and growth characteristics of peony purpura[J]. Chinese Journal of Ecology, 39(09): 2963-2973.) [22] 孙善军, 邹长明, 张晓红, 等. 2017. 遮阴对两个绿豆品种光合作用和生长发育的影响[J]. 草业科学, 34(06): 1247-1254. (Sun S J, Zou C M, Zhang X H, et al.2017. Effects of shading on photosynthesis and growth of two mung bean cultivars[J]. Pratacultural Science, 34(06): 1247-1254.) [23] 佘婷, 田野. 2020. 森林生态系统凋落物多样性对分解过程和土壤微生物特性影响研究进展[J]. 生态科学, 39(01): 213-223. (She T, Tian Y.2020. Research progress on the effects of litter diversity on decomposition process and soil microbial characteristics in forest ecosystem[J]. Ecological Science, 39(01): 213-223.) [24] 舒韦维, 卢立华, 李华, 等. 2021. 林分密度对杉木人工林林下植被和土壤性质的影响[J]. 生态学报, 41(11): 4521-4530. (Shu W W, Lu L H, Li H, et al.2021. Effects of stand density on understory vegetation and soil properties of Chinese fir plantation[J]. Acta Ecologica Sinica, 41(11): 4521-4530.) [25] 宋小帅, 康峰峰, 韩海荣, 等. 2014. 太岳山不同郁闭度油松人工林枯落物及土壤水文效应[J]. 水土保持通报, 34(03): 102-108. (Song X S, Kang F F, Han H R, et al.2014. Litter and soil hydrological effects of Pinus tabulaeformis plantation with different canopy density in Taiyue Mountain[J]. Bulletin of Soil and Water Conservation, 34(03): 102-108.) [26] 汪一敏, 陈茜茜, 俞冰, 等. 2019. 不同种植模式对延胡索产量及品质形成的影响[J]. 中国现代应用药学, 36(09): 1042-1049. (Wang Y M, Chen X Q, Yu B, et al.2019. Effects of different planting patterns on yield and quality formation of Corydalis binneri[J]. Chinese Modern Applied Pharmacy, 36(09): 1042-1049.) [27] 赵苏亚, 王瑞辉, 刘凯利, 等. 2020. 抚育间伐对不同年龄杉木人工林生长及林下植被多样性的影响[J]. 中南林业科技大学学报, 40(12): 34-43. (Zhao S Y, Wang R H, Liu K L, et al.2020. Effects of thinning on growth and understory diversity of Chinese fir plantation at different ages[J]. Journal of Central South University of Forestry and Technology, 40(12): 34-43.) [28] 张志扬, 谭昕, 张瑜, 等. 2017. 不同郁闭度橡胶林下蝴蝶豆的生长研究[J]. 中国热带农业, 12(05): 33-35. (Zhang Z Y, Tan X, Zhang Y, et al.2017. Studies on the growth of butterfly bean under rubber forest with different canopy density[J]. Chinese Tropical Agriculture, 12(05): 33-35.) [29] Burns R G, DeForest J L, Marxsen J, et al.2013. Soil enzymes in a changing environment: Current knowledge and future directions[J]. Soil biology and biochemistry, 58(03): 216-234. [30] Chen H, Li D J, Mao Q G, et al.2019. Resource limitation of soil microbes in karst ecosystems[J]. Science of the Total Environment, 650(04): 241-248. [31] Chen J, Sinsabaugh R L.2020. Linking microbial functional gene abundance and soil extracellular enzyme activity: Implications for soil carbon dynamics[J]. Global Change Biology, 27(07): 23-28. [32] Hill B H, Elonen C M, Seifert L R, et al.2012. Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers[J]. Ecological Indicators, 18(05): 540-551. [33] Huang W J, Spohn M.2015. Effects of long-term litter manipulation on soil carbon, nitrogen, and phosphorus in a temperate deciduous forest[J]. Soil Biology and Biochemistry, 83(14): 12-18. [34] Kotroczó Z, Veres Z, Fekete I, et al.2014. Soil enzyme activity in response to long-term organic matter manipulation[J]. Soil Biology and Biochemistry, 70(08): 237-243. [35] Li J, Zhou M Y, Alaei S, et al.2020. Rhizosphere priming effects differ between Norway spruce (Picea abies) and Scots pine seedlings cultivated under two levels of light intensity[J]. Soil Biology and Biochemistry, 145(06): 321-332 . [36] Ma Z Z, Zhang X C, Zheng B Y, et al.2021. Effects of plastic and straw mulching on soil microbial P limitations in maize fields: Dependency on soil organic carbon demonstrated by ecoenzymatic stoichiometry[J]. Geoderma, 388(08): 114-928. [37] Nannipieri P, Maria T, Judith A, et al.2020. Beyond microbial diversity for predicting soil functions: Amini review[J]. Pedosphere, 30(01): 5-17. [38] Sinsabaugh R L, Hill B H, Shah JJF.2009. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 462(10): 795-798. [39] Waring B G, Weintraub S R, Sinsabaugh R L.2014. Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils[J]. Biogeochemistry, 117(03): 101-113. [40] Xu Z W, Yu G R, Zhang X Y, et al.2017. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC)[J]. Soil Biology and Biochemistry, 104(07): 152-163. [41] Zhang B G, Du N N, Li Y J, et al.2018. Distinct biogeographic patterns of rhizobia and non-rhizobial endophytes associated with soybean nodules across China[J]. Science of the Total Environment, 643(10): 569-578.