Abstract:Epidermal growth factor (EGF) and its receptor (epithelial growth factor receptor, EGFR) can regulate the growth and survival of endometrial epithelial cells to a certain extent, hypoxia-inducible facto-2α (HIF-2α) is one of the main factors regulating the internal environment of the uterus and the adaptation of animals to the hypoxic environment, all of which can affect the development and normal function of the uterus. In this study, the expression of EGF, EGFR, and HIF-2α in the yak (Bos grunniens) uterus was localized and detected by immunohistochemistry (IHC), qPCR and Western blot. The expression of EGF, EGFR, and HIF-2α in the yak uterus at different stages of life was analyzed by qPCR and Western blot to investigate the molecular mechanisms involved in the reproductive development of yaks. IHC results showed that EGF, EGFR, and HIF-2α were mainly distributed in the cytoplasm, uterine gland, vascular endothelial cells, and lymphocytes of the yak endometrial epithelium in 3 periods of the uterus. The qPCR results showed that the relative expression of EGF in the luteal phase was significantly higher than that in the follicular phase and gestational stage (P<0.05), and the relative expression of EGFR and HIF-2α in the follicular phase was significantly higher than that in the luteal phase and pregnancy (P<0.05). The results of Western blot showed that the relative expression of EGF, EGFR, and HIF-2α was significantly higher than that in the follicular stage and luteal phase during pregnancy (P<0.05). In conclusion, EGF, EGFR, and HIF-2α were widely distributed in uterus, and the expression of the 3 were different at different times, suggested that they might play an important role in yak reproduction. This study further elucidates the changes of expression of EGF, EGFR, and HIF-2α in yak uterus from estrus to pregnancy, and provides basic information to study the role of the three factors in the development mechanism of endometrial of Yak at different stages of reproduction cycle.
龙敏, 崔燕, 王彪, 庞鑫, 余四九, 何俊峰, 白雪峰, 王晓艳. 牦牛繁殖周期不同阶段子宫中EGF、EGFR 及 HIF-2α 的表达与定位研究[J]. 农业生物技术学报, 2023, 31(8): 1632-1640.
LONG Min, CUI Yan, WANG Biao, PANG Xin, YU Si-Jiu, HE Jun-Feng, BAI Xue-Feng, WANG Xiao-Yan. Expression and Localization of EGF, EGFR and HIF-2α in the Uterus of Yak (Bos gruuniens) at Different Stages of Reproduction Cycle. 农业生物技术学报, 2023, 31(8): 1632-1640.
[1] 班蕙梅, 崔燕, 王彪. 2021. 牦牛子宫及卵巢动脉的铸型研究[J]. 中国兽医科学, 51(06): 760-767. (Ban H M, Cui Y, Wang B.2021. Study on the casting of yak uterus and ovarian artery[J]. Chinese Veterinary Science, 51(06):760-767.) [2] 杜军, 汪攀, 龚胜,等. 2022. HIF1α/HIF2α 经 EGF 调控胶质瘤细胞化疗抵抗机制研究[J]. 重庆医学, 051(008): 051(008): 1261-1265. (Du J, Wang P, Gong S, et al. 2022. Study on the mechanism of HIF1α/HIF2α regulating gli-oma cell chemotherapy resistance via EGF[J]. Chongq-ing Medicine, 051(008): 1261-1265.) [3] 邓鋆, 张旭, 喻珊珊. 2017. HIF-1α 和 HIF-2α 在低氧性肺动脉高压中的不同作用研究进展[J]. 中国药理学通报,33(001): 10-13. (Deng J, Zhang X, Yu S S.2017. Ad-vances in differential roles of HIF-1α and HIF-2α in the pathogenesis of hypoxic pulmonary hypertension[J]. Chinese Pharmacological Bulletin, 33(001): 10-13.) [4] 段永霞, 崔燕, 余四九,等. 2010. 牦牛发情周期子宫组织结构的观察[J]. 畜牧兽医学报, 41(9): 1213-1218. (Duan Y X, Cui Y, Yu S J, et al. Observation of the histological structure of the yak(Bos grunniens) uterus during estrus cycle[J]. Acta Veterinaria et Zootechnica Sinica, 41(9):1213-1218.) [5] 冯琳琳, 凌娜. 2022. 加减右归丸对多囊卵巢综合征不孕症患者卵泡发育及子宫内膜容受性的影响[J]. 辽宁中医药大学学报, 24(3): 168-171. (Feng L L, Lin N.2022. Effects of modified yougui pill on follicle development and endometrial receptivity in infertile patients with polycystic ovary syndrome[J]. Journal of Liaoning Uni-versity of Traditional Chinese Medicine, 24(3): 168-171.) [6] 李樊,李隐侠,舒嘉傲,等. 2022. 热应激通过钙信号调控湖羊卵巢颗粒细胞凋亡和雌激素合成[J]. 江苏农业学报,38(05): 1278-1285. (Li F, Li Y X, Shu J A, et al. 2022. Regulation of heat stress on ovarian granulosa cell apop-tosis and estrogen synthesis in Hu sheep through calci-um signal[J]. Jiangsu Journal of Agricultural Sciences, 38(05): 1278-1285.) [7] 刘洪梅, 曹云霞. 2006. 表皮生长因子及其受体与早期自然流产相关性研究[J]. 安徽预防医学杂志, 12(3): 3. (Liu H M, Cao Y X.2006. Study on the correlation of epider-mal growth factor and its receptor with spontaneous abortion in early gestation stage[J]. Anhui Journal of Preventive Medicine, 12(3): 161-163.) [8] 李文浩, 金夏阳, 任越, 等. 2021. 玉树牦牛 USP9Y 与 ND1 基因多态性分析及遗传进化研究[J]. 江西农业大学学报, 43(06): 1388-1394. (Li W H, Jin X Y, Ren Y, et al. 2021. Polymorphism analysis and genetic evolution of USP9Y and ND1 genes in Yushu yak[J]. Acta Agricul-turae Universitatis Jiangxiensis, 43(06): 1388-1394.) [9] 刘晓淋, 杜凤娇, 雷钏,等. 2015. 低氧分压通过低氧诱导因子(HIF)影响卵母细胞的体外成熟和早期胚胎的发育[J]. 中国畜牧兽医, 42(6): 1559-1565. (Liu X L, Du F J, Lei C, et al. 2015. Effects of low oxygen tension for in vitro oocyte maturation and early embryo development through hypoxia inducible factor (HIF)[J]. China Ani-mal Husbandry & Veterinary Medicine, 42(6): 1559-1565. ) [10] 李洋, 朱颖军, 石岩蓉,等. 2014. EGF 和 TGF-a 在子宫内膜癌中的表达[J]. 实用临床医学, 3: 64-67. (Li Y, Zhu Y J, Shi Y R, et al. 2014. Expression of EGF and TGF-a in endometrial carcinoma[J]. Practical Clinical Medicine, 3: 64-67.) [11] 李月娇, 崔燕, 张倩,等. 2021. CTGF 和 FGF-2 在不同年龄牦牛肺内的分布与表达研究[J]. 畜牧兽医学报, 52(7):2025-2033. (Li Y J, Cui Y, Zhang Q, et al. 2021. Study on the distribution and expression of CTGF and FGF-2 in the lungs of yaks at different ages[J]. Acta Veterinaria et Zootechnica Sinica, 52(7): 2025-2033. ) [12] 李月琴.2017. EGF 和胰岛素对牦牛乳腺上皮细胞主要葡萄糖运载体表达的影响[D]. 硕士学位论文, 甘肃农业大学, 导师: 余四九. pp. 8-9. (Li Y Q.2017. Effects of EGF and insulin on the expression of main glucose transporter in yak mammary epithelial cells[D]. Thesis for M. S., Gansu Agricultural University, Supervisor: Yu S J, pp. 8-9.) [13] 罗玉茹.2019. EGF 和 EGFR 在牛发情周期卵巢组织的定位和表达研究[D]. 硕士学位论文, 西北农林科技大学, 导师: 卿素珠, pp. 6-9. (Luo Y R.2019. Research of the localization and expression of EGF and EGFR in bovine estrus cycle[D]. Thesis for M. S., Northwest A&F Uni-versity, Supervisor: Qing S Z, pp. 6-9.) [14] 潘阳阳, 李秦, 崔燕, 等. 2015. EGF、EGFR 在牦牛卵母细胞中的表达及对胚胎发育能力的作用[J]. 中国农业科学, 48(12): 2439-2448. (Pan Y Y, Li Q, Cui Y, et al. 2015. The Expression of EGF and EGFR in yak oocyte and its function on development competence of embryo[J]. Scientia Agricultura Sinica, 48(12): 2439-2448.) [15] 文德全, 崔燕, 余四九,等. 2022. HIF-1α 和 FGF-2 在不同年龄牦牛睾丸中的表达与定位[J]. 中国兽医科学, 52(6):789-796. (Wen D Q, Cui Y, Yu S J, et al. 2022. Expres-sion and localization of HIF-1α and FGF-2 in different age yak testes[J]. Chinese Veterinary Science, 52(6):789-796.) [16] 吴凯峰.2004. EGF、IGF-Ⅰ和相应的受体在牛早期胚胎中的表达及对卵母细胞体外成熟的影响[D]. 硕士学位论文, 内蒙古大学,导师: 刘东军. pp. 11-17. (Wu K F.2004. Expression of EGFR, IGF-1 and IGF-1R in bo-vine preimplantation embryo and effect of EGF, IGF-1 on muturation of bovine oocyte in vitro[D]. Thesis for M. S., Inner Mongolia University, Supervisor: Liu X D, pp. 11-17.) [17] 杨玉莹, 荆海霞, 方莉莉. 2020. ELISA 法测定 EGF 及 EGFR 在牦牛不同繁殖期乳腺组织内的含量[J]. 黑龙江畜牧兽医, 4: 142-145. (Yang Y Y, Jin H X, Fang L L.2022. Determination of EGF and EGFR in different reproduc-tive stages of yaks by ELISA in mammary tissues of yaks at different reproductive stages[J]. Heilongjiang Animal Scienceand Veterinary Medicine, 4: 142-145.) [18] 昝林森.2007. 牛生产学[M]. 第二版. 中国农业出版社, 北京. pp. 180-183. (Zan L S.2007. Cattle Production Sci-ence[M]. Version 2. China Agricultural Press, Beijing. pp. 180-183.) [19] 张晖, 潘阳阳, 王萌, 等. 2021. 牦牛 PTGES 基因克隆及其在发情周期主要生殖器官的表达定位[J]. 农业生物技术学报, 29(10): 1949-1957. (Zhang H, Pan Y Y, Wang M, et al. 2021. Cloning of yak's (Bos grunniens) PTGES gene and its expression and location in main reproduc-tive organs of estrus cycle[J]. Journal of Agricultural Biotechnology, 29(10): 1949-1957.) [20] 张骏鸿, 刘晓坤, 魏强, 等. 2015. 小鼠卵巢 EGFR 表达检测及 EGF 提高小鼠超数排卵效果研究[J]. 中国兽医学报, 35(10): 1702-1707. (Zhang J H, Liu X K, Wei Q, et al. 2015. EGFR expression in ovary and superovulation efficiency by EGF injection in mouse[J]. Chinese Jour-nal of Veterinary Science, 35(10): 1702-1707.) [21] 肇涛澜, 张硕, 钱文峰. 2020. 翻译延伸的顺式调控机理与生物学效应[J]. 遗传, 42(07): 613-631. (Zhao T L, Zhang S, Qian W F.2020. Cis-regulatory mechanisms and bio-logical effects of translation elongation[J]. Hereditas, 42(07): 613-631.) [22] 周平.2007. EGF, TGFα, EGFR 在绵羊早期胚胎中的表达和作用研究[D]. 博士学位论文, 内蒙古大学, 导师: 旭日干, pp. 73-86. (Zhou P, Liu D J, Yan Z, et al. 2007. The expression and function of EGF, TGFα and EGFR in ovine preimplantation embryos development[D]. Thesis for Ph. D., Inner Mongolia University, Supervisor: Xu R G, pp. 73-86.) [23] 周泉勇, 刘敬, 刘晨龙, 等. 2023. DIRAS3 诱导猪子宫内膜上皮细胞自噬及对容受性相关基因表达的影响[J]. 江西农业大学学报, 45(1): 169-178. (Zhou Q Y, Liu J, Liu C L, et al. 2022. DIRAS3 induces autophagy in porcine en-dometrial epithelial cells and its effect on the expression of receptivity related genes[J]. Acta Agriculturae Univer-sitatis Jiangxiensis, 45(1): 169-178.) [24] Christiane Nolte, Kirchhoff F, Kettenmann H.2010. Epider-mal growth factor is a motility factor for microglial cells in vitro: Evidence for EGF receptor expression[J]. Euro-pean Journal of Neuroscience, 9(8): 1690-1698. [25] Ejskjr K, S Rensen B S, Poulsen S S, et al. 2007. Expression of the epidermal growth factor system in endometrioid endometrial cancer[J]. Gynecologic Oncology, 104(1):158-167. [26] Elleman T C, Domagala T, Mckern N M, et al. 2001. Identifi-cation of a determinant of epidermal growth factor re-ceptor ligand-binding specificity using a truncated, high- affinity form of the ectodomain[J]. Biochemistry, 40(30): 8930-8939. [27] Estrada C, Villalobo A.2006. Epidermal growth factor recep-tor in the adult brain, In Janigro D, The Cell Cycle in the Central Nervous System[M]. USA, Humana Press, pp.265-277. [28] Fu Y Y, Gao W L, Chen M, et al. 2010. Prostasin regulates hu-man placental trophoblast cell proliferation via the epi-dermal growth factor receptor signaling pathway[J]. Hu-man Reproduction, 25: 623-632. [29] Fukui Y, Hirota Y, Matsuo M, et al. 2019. Uterine receptivity, embryo attachment, and embryo invasion: Multistep pro-cesses in embryo implantation[J]. Reproductive Medi-cine and Biology, 18: 234-240. [30] Hoefflin R, Harlander S, Schafer S, et al. 2020. HIF-1α and HIF-2α differently regulate tumour development and in-flammation of clear cell renal cell carcinoma in mice[J]. Nature Communications, 11(1): 1-21. [31] Laisk T, Kukuskina V, Palmer D, et al. 2018. Large-scale me-ta-analysis highlights the hypothalamic pituitary gonad-al axis in the genetic regulation of menstrual cycle length[J]. Human Molecular Genetics, 27(24): 4323-4332. [32] Lechuga T J, Qi Q, Magness R R, et al. 2019. Ovine uterine ar-tery hydrogen sulfide biosynthesis in vivo: Effects of ovarian cycle and pregnancy[J]. Biology of Reproduc-tion, 100(6): 1630-1636. [33] Niklasson C U, Fredlund E, Monni E, et al. 2021. Hypoxia in-ducible factor-2α importance for migration, prolifera-tion, and self -renewal of trunk neural crest cells[J]. De-velopmental Dynamics, 250(2): 191-236. [34] Nolte C, Kirchhoff F, Kettenmann H.1997. Epidermal growth factor is a motility factor for microglial cells in vitro: Ev-idence for EGF receptor expression[J]. European Jour-nal of Neuroscience, 9: 1690-1698. [35] Park J E, Kim M, Lee J, et al. 2020. In vitro maturation on an agarose matrix improves the developmental competence of porcine oocytes[J]. Theriogenology, 157: 7-17. [36] Pillai S K K, Tay A, Nair S, et al. 2012. Triple-negative breast cancer is associated with EGFR, CK5/6 and c-KIT ex-pression in Malaysian women[J]. BMC Clinical Patholo-gy, 12: 18. [37] Pudeek M, Krol K, Catapano J, et al. 2020. Epidermal growth factor (EGF) augments the invasive potential of human glioblastoma multiforme cells via the activation of col-laborative EGFR/ROS-dependent signaling[J]. Interna-tional Journal of Molecular Sciences, 21(10): 3605. [38] Ren H, Birch N P, Suresh V.2016. An optimised human cell culture model for alveolar epithelial transport[J]. PLOS ONE, 11(10): e0165225. [39] Song L, Cui Y, Xiao L, et al. 2019. DHT and E2 synthesis-re-lated proteins and receptors expression in male yak skin during different hair follicle stages[J]. General and Com-parative Endocrinology, 286(C): 113245. [40] Sun D, Bullock M R, Altememi N, et al. 2010. The effect of epidermal growth factor in the injured brain after trauma in rats[J]. Journal of Neurotrauma, 27(5): 923-938. [41] Yang J R.2017. Does mRNA structure contain genetic infor-mation for regulating co-translational protein folding?[J]. Zoological Research, 38(1):36-43. [42] Zhao F L, Qin C F.2019. EGF promotes HIF-1α expression in colorectal cancer cells and tumor metastasis by regulat-ing phosphorylation of STAT3[J]. European Review for Medical and Pharmacological Sciences, 23: 1055-1062 [43] Zhao F Q.2014. Biology of glucose transport in the mammary gland[J]. Journal of Mammary Gland Biology Neopla-sia, 19(1): 3-17. [44] Zheng H L, Wang L H, Sun B S, et al. 2017. Oligomer procy-anidins (F2) repress HIF-1α expression in human U87 glioma cells by inhibiting the EGFR/ AKT/mTOR and MAPK/ERK1/2 signaling pathways in vitro and in vivo[J]. Oncotarget, 8(49): 85252-85262.