Expression Analysis of the StNF-YA8 Gene Associated with Dormancy Release in Potato (Solanum tuberosum)
WANG Xiao1,2, WEI Han1, LI Shi-Gui1, WANG Kai-Tong1,2, ZHAO Liang3, ZHANG Ning1,2, SI Huai-Jun1,2,*
1 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; 2 State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; 3 Qitai Wheat Experimental Station, Xinjiang Academy of Agricultural Sciences, Qitai 831800, China
Abstract:Nuclear factor-Y (NF-Y) is a class of transcription factors widely distributed in eukaryotes. It composed of NF-YA, NF-YB and NF-YC subunits. NF-YA is involved in regulating plant growth and development, and stress response. In this study, qRT-PCR method was used to analyze the expression pattern of 10 StNF-YA genes of potato (Solanum tuberosum) in the process of tuber dormancy release. The results showed that the StNF-YA8 gene was consistently up-regulated in expression during dormancy release in tubers. The StNF-YA8 gene was further cloned (GenBank No. XM_015309982.1), and its ORF was 591 bp, encoding 196 amino acids. The subcellular localization vector of StNF-YA8 protein was constructed, and the results showed that StNF-YA8 protein was localized in the nucleus and cell membrane. Tissue-specific analysis revealed that the StNF-YA8 gene was differentially expressed between different tissues. The results of bioinformatics analysis showed that the potato StNF-YA8 protein contained a conserved CBFB domain, and had the highest evolutionary relationship with wild potato (S. commersonii); StNF-YA8 protein closely interacted with StNF-YB3/5/10/14/17 and StNF-YC1/4/5/8/9 proteins; there were cis-acting elements involved in light response, circadian rhythm control and hormone response in the promoter sequence of this gene. The results can provide a basis for the molecular mechanism analysis of potato StNF-YA8 gene involved in regulating tuber dormancy release.
[1] 李竟才, 王强林, 宋威武, 等. 2020. 基于侯选基因标记的四倍体马铃薯休眠QTL关联分析[J]. 作物学报, 46(9): 1380-1387. (Li J C, Wang Q L, Song W W, et al.2020. QTL association analysis of dormancy in tetraploid potato based on candidate gene markers[J]. Acta Agronomica Sinica, 46(9): 1380-1387.) [2] 罗红玉, 杨江伟, 冯亚, 等. 2021. STTM技术沉默马铃薯Stu-miR156对其侧根发育的影响[J]. 园艺学报, 48(3): 531-538. (Luo H Y, Yang J W, Feng Y, et al.2021. The effect of Stu-miR156 silencing by STTM technology on potato lateral root development[J]. Acta Horticulturae Sinica, 48(3): 531-538.) [3] 钱嘉怡. 2022. 豆梨NF-Y家族基因分析及其在种子休眠解除过程的表达与作用研究[D]. 硕士学位论文, 扬州大学, 导师: 王春雷, pp. 40-42. (Qian J Y.2022. Genome characterization and preliminary study of transcription factor NF-Y family related to dormancy release of Pyrus calleryana Decne seeds[D]. Thesis for M.S., Yangzhou University, Supervisor: Wang C L, pp. 40-42.) [4] 司怀军, 张宁, 王蒂. 2007. 马铃薯块茎休眠和发芽的分子机理及调控策略[J]. 中国马铃薯, (2): 104-107. (Si H J, Zhang N, Wang D. 2007. Molecular mechanism and regulatory strategy of potato tuber dormancy and germination[J]. Chinese Potato Journal, (2): 104-107.) [5] 唐静, 侯丽霞, 车永梅, 等. 2007. 外源水杨酸与一氧化氮对玉米种子萌发及淀粉酶活性的影响[J]. 安徽农学通报, (19): 40-42. (Tang J, Hou L X, Che Y M, et al. 2007. Effects of exogenous salicylic acid and nitric oxide on maize seed germination and amylase activity[J]. Anhui Agricultural Science Bulletin, (19): 40-42.) [6] 王芳芳, 杨江伟, 朱熙, 等. 2021. 马铃薯StERF109基因的生物信息学及表达分析[J]. 农业生物技术学报, 29(11): 2087-2098. (Wang F F, Yang J W, Zhu X, et al.2021. Bioinformatics and expression analysis of potato StERF109 gene in potato (Solanum tuberosum)[J]. Journal of Agricultural Biotechnology, 29(11): 2087-2098.) [7] 王凯彤, 濮雪, 王睿, 等. 2022. 马铃薯块茎休眠解除过程中StTCP23基因的表达分析[J]. 农业生物技术学报, 30(12): 2279-2289. (Wang K T, Pu X, Wang R, et al.2022. Expression analysis of StTCP23 gene during dormancy release of potato tubers[J]. Journal of Agricultural Biotechnology, 30(12): 2279-2289.) [8] 吴玉, 周亚晶, 胡惠, 等. 2021. 种子休眠与解除的分子机制研究进展[J]. 种子, 40(5): 63-70. (Wu Y, Zhou Y J, Hu H, et al.2021. Research progress on the molecular mechanism of seed dormancy and release[J]. Seed, 40(5): 63-70.) [9] 杨柏云, 连勇, 章敏华, 等. 2004. 马铃薯休眠阶段中内源激素变化的研究[J]. 中国马铃薯, 18(6): 321-325. (Yang B Y, Lian Y, Zhang M H, et al.2004. Study on the changes of endogenous hormones during potato dormancy[J]. Chinese Potato Journal, 18(6): 321-325.) [10] 杨帅, 闵凡祥, 高云飞, 等. 2014. 新世纪中国马铃薯产业发展现状及存在问题[J].中国马铃薯, 28(5): 311-316. (Yang S, Min F X, Gao, Y F, et al.2014. Status and challenges of China potato industry of the 21st century[J]. Chinese Potato Journal, 28(5): 311-316.) [11] Cai X, Ballif J, Endo S, et al.2007. A putative CCAAT-binding transcription factor is a regulator of flowering timing in Arabidopsis[J]. Plant Physiology, 145(1): 98-105. [12] Cao S, Kumimoto RW, Siriwardana CL, et al.2011. Identification and characterization of NF-Y transcription factor families in the monocot model plant Brachypodium distachyon[J]. PLOS ONE, 6(6): e21805. [13] Cartolano M, Castillo R, Efremova N, et al.2007. A conserved microRNA module exerts homeotic control over Petunia hybrida and Antirrhinum majus floral organ identity[J]. Nature Genetics, 39(7): 901-905. [14] Combier J P, Frugier F, Billy F D, et al.2006. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula[J]. Genes & Development, 20(22): 3084-3088. [15] Fujii H, Chinnusamy V, Rodrigues A, et al.2009. In vitro reconstitution of an abscisic acid signaling pathway[J]. Nature, 462(7273): 660-664. [16] Gao J, Ni X, Li H, et al.2021. miR169 and PmRGL2 synergistically regulate the NF-Y complex to activate dormancy release in Japanese apricot[J]. Plant Molecular Biology, 105(1-2): 83-97. [17] Ittersum M K, Aben F C B, Keijzer C J.1992. Morphological changes in tuber buds during dormancy and initial sprout growth of seed potatoes[J]. Potato Research, 35(3): 249-260. [18] Laloum T, De Mita S, Gamas P, et al.2013. CCAAT-box binding transcription factors in plants: Y so many?[J]. Trends in Plant Science,18(3): 157-166. [19] Lang G A, Early J D, Martin G C, et al.1987. Endo-, para, and ecodormancy: Physiological terminology and classification for dormancy research[J]. HortScience, 22(3): 371-377 [20] Law C N, Worland A J, Giorgi B.1976. The genetic control of ear-emergence time by chromosomes 5A and 5D of wheat[J]. Heredity, 36(1): 49-58. [21] Lee D K, Kim H I, Jang G, et al.2015. The NF-YA transcription factor OsNF-YA7 confers drought stress tolerance of rice in an abscisic acid independent manner[J]. Plant Science, 241: 199-210. [22] Li B, Qin Y, Duan H, et al.2011. Genome-wide-characterization of new and drought stress responsive mi-croRNAs in Populus euphratica[J]. Journal of Experimental Botany, 62(11): 3765-3779. [23] Li S G, Zhang N, Zhu X, et al.2021. Genome-wide analysis of NF-Y genes in potato and functional identification of StNF-YC9 in drought tolerance[J]. Frontiers in Plant Science, 12: 749688. [24] Li S, Li K, Ju Z, et al.2016. Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening[J]. BMC Genomics, 17: 36. [25] Liu J X, Howell SH.2010. bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis[J]. Plant Cell, 22(3): 782-796. [26] Liu X, Hu P, Huang M, et al.2016. The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis[J]. Nature Communications, 7: 12768. [27] McNabb DS, Tseng KA, Guarente L.1997. The Saccharomyces cerevisiae Hap5p homolog from fission yeast reveals two conserved domains that are essential for assembly of heterotetrameric CCAAT-binding factor[J]. Molecular and Cellular Biology, 17(12): 7008-7018. [28] Mullins E, Milbourne D, Petti C, et al.2006. Potato in the age of biotechnology[J]. Trends in Plant Science, 11(5): 254-260. [29] Nardone V, Chaves-Sanjuan A, Nardini M.2017. Structural determinants for NF-Y/DNA interaction at the CCAAT box[J]. Biochimica et Biophysica Acta-Biomembranes, 1860(5): 571-580. [30] Potkar R, Recla J, Busov V.2013. ptr-MIR169 is a posttranscriptional repressor of PtrHAP2 during vegetative bud dormancy period of aspen (Populus tremuloides) trees[J]. Biochemical and Biophysical Research Communications, 431(3): 512-518. [31] Romier C, Cocchiarella F, Mantovani R, et al.2003. The NF-YB/NF-YC structure gives insight into DNA binding and transcription regulation by CCAAT factor NF-Y[J]. Journal of Biological Chemistry, 278(2): 1336-1345. [32] Siriwardana C L, Kumimoto R W, Jones D S, et al.2014. Gene family analysis of the Arabidopsis NF-YA transcription factors reveals opposing abscisic acid responses during seed germination[J]. Plant Molecular Biology Reporter, 32(5): 971-986. [33] Tuan P A, 2019. Molecular Mechanisms of Seed Germination[M]. Sprouted Grains, The Kingdom of the Netherlands, pp. 1-24. [34] Wang Y P, Zhang N, Li T, et al.2019. Genome-wide identification and expression analysis of StTCP transcription factors of potato (Solanum tuberosum L.)[J]. Computational Biology and Chemistry, 78: 53-63. [35] Yoshida T, Fujita Y, Sayama H, et al.2010. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation[J]. The Plant Journal, 61(4): 672-685.