Expression Pattern of Inosine Monophosphate Specific Deposition Related Genes in Muscle Tissue of Jingyuan Chicken (Gallus gallus) and Pudong Chicken
ZHANG Juan1, YU Bao-Jun1, ZHU Ji-Hong2, HU Hong-Hong1, WANG Wei-Zhen1, CAI Zheng-Yun1, GU Ya-Ling1, XIN Guo-Sheng3,*
1 College of Agriculture, Ningxia University, Yinchuan 750021, China; 2 Ningxia Animal Husbandry Workstation, Yinchuan 750021, China; 3 College of Life Sciences, Ningxia University/Ningxia Feed Engineering Technology Research Center, Yinchuan 750021, China
Abstract:Inosine monophosphate (IMP), as an important material basis of meat flavor, has become an important index to evaluate the umami taste and freshness of meat. In order to explore the role of key regulatory genes in the process of inosine monophosphate deposition in muscle tissue of Jingyuan chicken (Gallus gallus) and Pudong chicken, and to provide theoretical basis for the study of muscle quality among breeds, in this study, based on IMP, inosine, and some physical indexes of Jingyuan chicken and Pudong chicken, the differentially expressed genes related to meat quality among different breeds were screened by transcriptome sequencing, and the expression differences of cyclin A1 interacting protein (protein interacting with cyclin A1, PROCA1) and chicken bile toxin 1 (axis inhibition protein 1, AXIN1) gene in breast muscle tissues of Jingyuan chicken and Pudong chicken were detected by the qPCR method. The results showed that the IMP content of Jingyuan chicken was higher than that of Pudong chicken, and the IMP content of breast muscle of Jingyuan chicken and Pudong chicken was significantly higher than that of leg muscle (P<0.05). The results of transcriptome sequencing showed that the differential genes PROCA1 and AXIN1 among different varieties were screened in glycerol phospholipid metabolism pathway, arachidonic acid metabolism, and Wnt signal pathway. By comparing the gene expression of different breeds, it was found that the expression of PROCA1 and AXIN1 genes in breast muscle of Jingyuan chicken was higher than that of Pudong chicken, and the trend of differential expression was consistent with that of transcriptome sequencing. In summary, PROCA1 and AXIN1 genes may be candidate genes that affect the specific deposition of inosinic acid in the muscle tissue of Jingyuan chicken and Pudong chicken. The results of this study provide a reference for further exploring the regulation mechanism of IMP-specific deposition of PROCA1 and AXIN1 genes.
[1] 包阿东, 刘长青, 刘帅, 等. 2008. 鸡肉风味候选基因AMPD1、ADSL、ATIC的分析[J]. 中国畜牧兽医, 35(02): 32-35. (Bao A D, Liu C Q, Liu S, et al. 2008. Candidate gene AMPD1, ADSL and ATIC of meat quality and flavor in chicken[J]. China Animal Husbandry & Veterinary Medicine, 35(02): 32-35.) [2] 陈继兰. 2004. 鸡肉肌苷酸和肌内脂肪含量遗传规律及相关候选基因的研究[D]. 博士学位论文, 中国农业大学, 导师: 杨宁, pp. 3-19. (Chen J L. 2004. Studies on inheritance and candidate genes of inosine-5'-monophosphate and intramuscular fat contents in chicken meat[D]. Thesis for Ph.D., China Agricultural University, Supervisor: Yang N, pp. 3-19.) [3] 邓凡, 李松玉, 许万福, 等. 2013. TGF-β1诱导的肿瘤细胞CSRNP1/AXIN1基因的表达及转录调节机制[J]. 南方医科大学学报, 33(08): 1122-1126. (Deng F, Li S Y, Xu W F, et al. 2013. AXIN1-related CSRNP1 mRNA expression and its transcriptional regulation in TGF-β1-induced tumor cells[J]. Journal of Southern Medical University, 33(08): 1122-1126.) [4] 虎红红, 黄增文, 母童, 等. 2020. 静原鸡肌苷酸沉积与ADSL基因mRNA表达量相关性分析[J]. 基因组学与应用生物学, 39(12): 5442-5448. (Hu H H, Huang Z W, Mu T, et al. 2020. Correlation analysis between inosine deposition and ADSL gene mRNA expression in Jingyuan Chicken[J]. Genomics and Applied Biology, 39(12): 5442-5448.) [5] 李维, 祖盘玉, 李洪林, 等. 2017. 赤水乌骨鸡肌肉生长抑制素基因多态性及其与肉质性状的关联分析[J]. 中国畜牧兽医, 44(04): 1115-1121. (Li W, Zu P Y, Li H L, et al. 2017. Polymorphisms of MSTN gene and association with meat quality traits in Chishui black-bone chicken[J]. China Animal Husbandry & Veterinary Medicine, 44(04): 1115-1121.) [6] 刘望夷, 竺来发, 翁志发, 等. 1980. 肉用鸡肌肉中肌苷酸含量的比较[J]. 中国农业科学,(04): 79-83. (Liu W Y, Zhu L F, Wen Z F. et al. 1980. A comparative study of inosinic acid contents in chicken muscle[J]. Scientia Agricultura Sinica, (04): 79-83.) [7] 刘永, 佟荟全, 刘丽仙, 等. 2017. 成年大围山微型鸡肌苷酸含量与肉品质相关性研究[J].中国家禽, 39(19): 11-16. (Liu Y, Tong H Q, Liu L X, et al. 2017. Correlation between the content of inosine acid and meat quality of adult Daweishan mini chicken[J]. China Poultry, 39(19): 11-16.) [8] 母童, 顾亚玲, 赵平, 等. 2018. 静原鸡ELOVL2基因遗传多态性研究[J].中国畜牧兽医, 45(03): 730-737. (Mu T, Gu Y L, Zhao P, et al. 2018. Study on polymorphism of ELOVL2 gene in Jingyuan chicken[J]. China Animal Husbandry & Veterinary Medicine, 45(03): 730-737.) [9] 曲湘勇, 曲正, 贺长青, 等. 2017. “桃源鸡”肌肉营养成分分析[J]. 营养学报, 39(04): 414-416. (Qu X Y, Qu Z, He C Q, et al. 2017. Analysis of the muscle nutrients composition of Taoyuan chicken[J]. Acta Nutrimenta Sinica, 39(04): 414-416.) [10] 沙学梅, 豆腾飞, 佟荟全, 等. 2018. 武定鸡和大围山微型鸡公鸡肉品质物理性状比较研究[J]. 中国家禽, 40(23): 10-13. (Sha X M, Dou T F, Tong H Q, et al. 2018. Comparative analysis of physical characters of cock meat quality between Wuding chicken and Daweishan mini chicken[J]. China Poultry, 40(23): 10-13.) [11] 王述柏. 2004. 鸡肉肌苷酸沉积规律及营养调控研究[D]. 博士学位论文, 中国农业科学院, 导师: 文杰, pp. 1-14. (Wang S B. 2004. Studies on the deposition of 5'-inosinic acid in chicken meat and its modification by nutrition[D]. Thesis for Ph. D., Chinese Academy of Agricultural Sciences, Supervisor: Wen J, pp. 1-14.) [12] 王翠丽, 柏雪, 邱翔, 等. 2011. 乌骨鸡肉中氨基酸组成和肌苷酸含量的分析[J]. 西南民族大学学报(自然科学版), 37(01): 90-92. (Wang C L, Bai X, Qiu X, et al. 2011. Amino acid composition and ionsine monophosphate contents in meat of black bone chicken[J]. Journal of Southwest Minzu University (Natural Science Edition), 37(01): 90-92.) [13] 王雪峰, 黄艾祥, 范江平, 等. 2018. 云南剥隘鸡肌肉中氨基酸的组成及含量分析[J]. 食品研究与开发, 39(13): 136-142. (Wang X F, Huang A X, Fan J P, et al. 2018. Composition and content analysis of amino acids in muscle of Yunnan boai chicken[J]. Food Research and Development, 39(13): 136-142.) [14] 谢成侠. 1995. 中国养禽史[M]. 北京: 中国农业出版社. (Xie C X. 1995. History of Poultry Breeding in China[J]. China Agricultural Publishing House, Beijing, China.) [15] 徐英, 李石友, 李琦华, 等. 2011. 蛋白质水平对牛肉肌苷酸含量的影响[J].西南农业学报, 24(01): 294-296. (Xu Y, Li S Y, Li Q H, et al. 2011. Effect of protein levels on beef inosine acid content[J]. Southwest China Journal of Agricultural Sciences, 24(01): 294-296.) [16] 徐善金, 虞德兵, 汪峰, 等. 2012. 鸭腺苷琥珀酸裂解酶基因序列特征及表达与肌肉肌苷酸含量的相关性分析[J]. 中国农业科学, 45(04): 774-785. (Xu S J, Yu D B, Wang F, et al. 2012. Analysis of sequence characters of ADSL gene and correlation between gene expression and IMP content in duck[J]. Scientia Agricultura Sinica, 45(04): 774-785.) [17] Abdullah Y. Abduliah N A, Al-beitawi, et al.2010. Growth performance, carcass and meat quality characteristics of different commercial crosses of broiler strains of chicken[J]. The Journal of Poultry Science, 47(1): 13-21. [18] Blonde G D, Spector A C.2017. An examination of the role of l-glutamate and inosine 5'-monophosphate in hedonic taste-guided behavior by mice lacking the T1R1 + T1R3 receptor[J]. Chemical Senses, 42(5): 393-404. [19] Diederichs S, Baumer N, Ji P, et al.2004. Identification of interaction partners and substrates of the cyclin A1-CDK2 complex[J]. International Journal of Biological Chemistry, 279(32): 33727-33741. [20] Hu J, Yu P, Ding X, et al.2015. Genetic polymorphisms of the AMPD1 gene and their correlations with IMP contents in Fast Partridge and Lingshan chickens[J]. Gene, 574(2): 204-209. [21] Jik Y P, Won S P, Suk W N, et al.2005. Mutations of β-catenin and AXIN1 genes are a late event in human hepatocellular carcinogenesis[J]. Liver International, 25(1): 70-76. [22] Salahshor S, Woodgett J R.2005. The links between axin and carcinogenesis[J]. Journal of clinical pathology, 58(3): 225-236. [23] Jayasena D D, Jung S, Kim H J, et al.2015. Taste-active compound levels in Korean native chicken meat: The effects of bird age and the cooking process[J]. Poultry Science, 94(8): 1964-1972. [24] Jin C L, Zeng H R, Gao C Q, et al.2020. Dietary supplementation with pioglitazone hydrochloride and chromium methionine manipulates lipid metabolism with related genes to improve the intramuscular fat and fatty acid profile of yellow-feathered chickens[J]. Journal of the Science of Food and Agriculture, 100(3): 1311-1319. [25] Li J Q, Quan H, Liu Q, et al.2013. Alterations of axis inhibition protein 1 (AXIN1) in hepatitis B virus-related hepatocellular carcinoma and overexpression of AXIN1 induces apoptosis in hepatocellular cancer cells[J]. Oncology Research, 20(7): 281-288. [26] Mazzoni S M, Fearon E R.2014. AXIN1 and AXIN2 variants in gastrointestinal cancers[J]. Cancer Letterts, 355(1): 1-8. [27] Ninomiya, Kumiko.1998. Natural occurrence[J]. Food Reviews International, 14(2-3): 177-211. [28] Rui Y N, Xu Z, Lin S Y, et al.2004. Axin stimulates p53 functions by activation of HIPK2 kinase through multimeric complex formation[J]. EMBO Journal. 23(23): 4583-4594. [29] Satoshi I, Shosei K, Hideki Y, et al.1998. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3β and β-catenin and promotes GSK-3β-dependent phosphorylation of β-catenin[J]. EMBO Journal, 17(5): 1371-1384 [30] Xu H L, Feng Y Y, Jia Z K, et al.2017. AXIN1 protects against testicular germ cell tumors via the PI3K/AKT/mTOR signaling pathway[J]. Oncology Letters, 14(1): 981-986. [31] Xiao T, Li W, Wang X, et al.2018. Estrogen-regulated feedback loop limits the efficacy of estrogen receptor-targeted breast cancer therapy[J]. Proceedings of the National academy of Sciences of the USA, 115(31): 7869-7878. [32] Yan J S, Liu P F, Xu L M, et al.2018. Effects of exogenous inosine monophosphate on growth performance, flavor compounds, enzyme activity, and gene expression of muscle tissues in chicken[J]. Poultry Science, 97(4): 1229-1237. [33] Zhang Y, Neo S Y, Wang X, et al.1999. Axin forms a complex with MEKK1 and activates c-Jun NH(2)-terminal kinase/stress-activated protein kinase through domains distinct from Wnt signaling[J]. The Journal of Biological Chemistry, 274(49): 35247-54. [34] Zhang X D, Li Q H, Lou L F, et al.2015. High-resolution melting curve analysis of the ADSL and LPL genes and their correlation with meat quality and blood parameters in chickens[J]. Genetics and Molecular Research: GMR, 14(1): 2031-40. [35] Zhang M, Li D H, Li F, et al.2018a. Integrated analysis of miRNA and genes associated with meat quality reveals that gga-miR-140-5p affects intramuscular fat deposition in chickens[J]. Cellular Physiology and Biochemistry, 46(6): 2421-2433. [36] Zhang T, Lu H, Wang L, et al.2018b. Specific expression pattern of IMP metabolism related-genes in chicken muscle between cage and free range conditions[J]. PLOS ONE, 13(8): e201736.