1 College of Marine and Biotechnology/Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi University for Nationalities, Nanning 530008, China; 2 Guangxi Lvyounong Biological Technology Co., Ltd., Nanning 537100, China
Abstract:The banana (Musa acuminata) anthracnose disease caused by Colletotrichum musae is one of the most common post harvest diseases of bananas. To screen biocontrol bacterial strains with significant efficacy against banana anthracnose, in this study, a strain, Y-2-3, was isolated from soil samples collected from an abandoned salt field in Beihai, Guangxi, China, showing an inhibition rate of 75.62% against C. musae, which mycelia treated with Y-2-3 became swollen, deformed, and intertwined. Functional characterization revealed that Y-2-3 possesses growth-promoting properties, including nitrogen fixation, ammonia (NH3) production, and phosphate solubilization, as well as the ability to produce cellulase and amylase. 16S rRNA and gyrase subunit B (gyrB) gene sequencing identified Y-2-3 as Bacillus velezensis. Dual culture assays confirmed that Y-2-3 exhibited broad-spectrum antifungal activity, with inhibition rates exceeding 50% against multiple pathogenic fungi. Moreover, volatile compounds produced by Y-2-3 exhibited a strong inhibitory effect on C. musae. Postharvest preservation experiments demonstrated that banana disease lesions were controlled within 40% under volatile treatment with Y-2-3. In conclusion, strain Y-2-3 exhibits both growth-promoting and biocontrol properties, showing great potential for application in banana anthracnose management and sustainable agriculture. This study provides theoretical basis and high-quality bacterial resources for the biological control of banana anthracnose.
[1] Buchanan R E, Gibbons N E.1995. 伯杰鉴定手册(第八版)[M].科学出版社,北京, pp. 591-611. (Buchanan R E, Gibbons N E.1995. Berger's Handbook of Bacterial Identification, Berger Appraisal Handbook (8th edition)[M]. Science Press, Beijing, China, pp. 591-611.) [2] 曹慧, 羊尾燕, 纳琦婷, 等. 2025. 贝莱斯芽孢杆菌对芒果炭疽病的抑制作用及果实保鲜效果[J/OL].植物学报, https://link.cnki.net/urlid/11.5705.Q.20250224.1419.006. (Cao H, Yang W Y, Na Q T, et al. 2025. The inhibitory effect of Bacillus velezensis on mango anthracnose and its fruit preservation effect[J/OL]. Journal of Integrative Plant Biology, https://link.cnki.net/urlid/11.5705.Q.20250224.1419.006) [3] 东秀珠, 蔡妙英. 2001. 常见细菌系统鉴定手册[M].科学出版社, 北京, pp. 376-396. (Dong X Z, Cai M Y.2001. Handbook for Identification of Common Bacterial Systems[M]. Science Press, Beijing, pp. 376-396.) [4] 李成江, 王勇, 刘玉敏,等.2025. 贝莱斯芽孢杆菌分离鉴定及对哈密瓜细菌性果斑病的防治效果[J/OL].应用与环境生物学报,https://link.cnki.net/doi/10.19675/j.cnki.1006-687x.2024.07008. (Li C J, Wang Y, Liu Y M, et al. 2025. Isolation and identification of Bacillus velezensis and its control effect on bacterial fruit spot disease of Hami Melon[J/OL]. Chinese Journal of Applied&Environmental Biology, https://link.cnki.net/doi/10.19675/j.cnki.1006-687x.2024.07008.) [5] 李乔曼, 2015.香蕉炭疽病生防细菌LYM3的鉴定, 发酵条件优化及抑菌活性成分的初步分析[D]. 硕士学位论文, 海南大学, 导师: 李晓宇, pp. 1-2. (LI Q M.2015.Screening of a biocontrol bacteria LYM3 against banana anthracnose, optimization of fermentation conditions and preliminary study on its antifungal substances[D]. Thesis for M.S., Hainan University, Supervisor: Li X Y, pp. 1-2.) [6] 刘娜. 2020,解磷解钾促生微生物肥料用菌株的分离[D]. 硕士学位论文, 沈阳农业大学, 导师: 韩梅, 何志刚, pp. 1-2. (Liu N.2020. The separation of microbial fertilizer strains was promoted by the hydrolysis of phosphorus and potassium[D]. There is for M.S., Shenyang Agricultural University, Supervisor: Han M, He Z G, pp. 1-2.) [7] 刘子瑶, 张思源, 丁万博, 等. 2025. 贝莱斯芽孢杆菌LXS-N2的功能特性及抑菌机理初探[].吉林农业大学学报, 47(03): 428-436. (Liu Z Y, Zhang S Y, Ding W B, et al.2025. Preliminary study on the functional characteristics and antibacterial mechanism of Bacillus subtilis LXS-N2[J/]. Journal of Jilin Agricultural University, 47(03): 428-436.) [8] 孟静, 张丽慧, 白变霞, 等. 2023. 一株党参根际促生长菌的促生长特性及其挥发性物质对农作物生长的影响[J]. 中国农学通报, 39(30): 123-131. (Meng J, Zhang L H, Bai B X, et al.2023. The growth promoting characteristics of a rhizosphere growth promoting bacterium of Codonopsis pilosula and the effect of its volatile substances on crop growth[J]. Chinese Agricultural Science Bulletin, 39(30): 123-131.) [9] 王晶, 周燕, 覃秋梅, 等. 2025. 香蕉炭疽病拮抗菌的筛选、鉴定及生防机制[J/OL].分子植物育种, https://link.cnki.net/urlid/46.1068.S.20250208.0838.002. (Wang J, Zhou Y, Qin Q M, et al. 2025 Screening, identification and biological control mechanism of antagonistic bacteria against Colletotrichum musae[J/OL]. Molecular Plant Breeding, https://link.cnki.net/urlid/46.1068.S.20250208.0838.002.) [10] 熊新颖, 韩树全, 罗立娜, 等. 2024. 生防菌对香蕉防病及促生作用的研究进展[J].农技服务, 41(09): 35-40. (Xiong X Y, Han S Q, Luo L N, et al.2024. Research progress on the preventive and growth promoting effects of biocontrol bacteria on bananas[J]. Agricultural Technology Service. 41(09): 35-40.) [11] 张婷, 万雨欣, 徐伟慧, 等. 2025. 一株玉米根际促生菌Leclercia adecarboxylata LN01促生效果研究及其基因组分析[J].生物技术通报, 41(01): 263-275. (Zhang T, Wan Y X, Xu W H, et al.2025. Study on the growth promoting effect and genomic analysis of Leclercia adecarboxylata LN01, a corn rhizosphere promoter[J]. Biotechnology Bulletin, 41(01): 263-275.) [12] 张博阳, 朱天辉, 韩珊. 2018. 桑氏链霉菌几丁质酶ChiKJ40基因的克隆表达及其抑菌作用[J]. 微生物学通报, 45(5): 1016-1026. (Zhang B Y, Zhu T H, Han S.2018. Cloning and expression of chitinase ChiKJ40 gene from Streptomyces sampsonii and its antibacterial effect[J]. Microbiology, 45(5): 1016-1026.) [13] Bhattacharyya P N, Jha D K.2012. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture[J]. World Journal of Microbiology & Biotechnology, 28(4): 1327-1350. [14] Chakraborty S, Harris J M.2022. At the crossroads of salinity and rhizobium-legume symbiosis[J]. Molecular Plant-microbe Interactions, 35(7): 540-553. [15] Chi Y W, Ma X Z, Chu S H, et al.2025. Nitrogen cycle induced by plant growth-promoting rhizobacteria drives "microbial partners" to enhance cadmium phytoremediation[J]. Microbiome, 13(1): 113. [16] Glickmann E, Dessaux Y A.1995. Critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria[J]. Applied Microbiology, 61(2): 793-796. [17] Gouda S, Kerry R G, Das G, et al.2018. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture[J]. Microbiological Research, 206: 131-140. [18] Hao X Y, Han S Y, Qin D K, et al.2021. Superior anti-infective potential of eugenol-casein nanoparticles combined with polyethylene glycol against Colletotrichum musae infections[J]. Royal Society of Chemistry Advances, 11(8): 4646-4653. [19] Intan Sakinah M A, Suzianti I V, Latiffah Z.2014. Phenotypic and molecular characterization of Colletotrichum species associated with anthracnose of banana (Musa spp) in Malaysia[J]. Genetics and Molecular Research, 13(2): 3627-3637. [20] Jumpathong W, Intra B, Euanorasetr J, et al.2022. Biosurfactant-producing Bacillus velezensis PW192 as an anti-fungal biocontrol agent against Colletotrichum gloeosporioides and Colletotrichum musae[J/OL]. Microorganisms, 10(5): 1017. [21] Li Z, Li J, Yu M, et al.2023. Bacillus velezensis FX-6 suppresses the infection of Botrytis cinerea and increases the biomass of tomato plants[J]. PLOS ONE, 18(6): e0286971. [22] Machado L P, Matsumoto S T, Jamal C M, et al.2014. Chemical analysis and toxicity of seaweed extracts with inhibitory activity against tropical fruit anthracnose fungi[J]. Journal of The Science of Food and Agriculture, 94(9): 1739-1744. [23] Poulaki E G, Tjamos S E.2023. Bacillus species: Factories of plant protective volatile organic compounds[J]. Journal of Applied Microbiology[J]. 134(3): lxad037. [24] Saeed Q, Xiukang W, Haider F U, et al.2021. Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms[J/OL]. International Journal of Molecular Sciences, 22(19): 10529. [25] Silva Junior W J D, Falcão R M, Sousa-Paula L C, et al.2018. Draft genome assembly of Colletotrichum musae, the pathogen of banana fruit[J]. Data in Brief, 17: 256-260. [26] Vieira W A D S, Lima W G, Nascimento E S, et al.2017. Thiophanate-methyl resistance and fitness components of Colletotrichum musae isolates from banana in Brazil[J]. Plant Disease, 101(9): 1659-1665. [27] Vignesh M, Shankar S R M, Mubarak Ali D, et al.2022. A novel rhizospheric bacterium: Bacillus velezensis NKMV-3 as a biocontrol agent against alternaria leaf blight in tomato[J]. Applied Biochemistry And Biotechnology, 194(1): 1-17. [28] Wang G F, Meng J F, Tian T, et al.2020. Endophytic Bacillus velezensis strain B-36 is a potential biocontrol agent against lotus rot caused by Fusarium oxysporum[J]. Journal of Applied Microbiology, 128(4): 1153-1162. [29] Wang Y Y, Piao F Z, Di Y C, et al.2024. Serratia plymuthica HK9-3 enhances tomato resistance against Phytophthora capsici by modulating antioxidant defense systems and rhizosphere micro-ecological condition[J]. Plant Physiology[J]. 176(3): e14323. [30] Yan H, Qiu Y, Yang S, et al.2021. Antagonistic activity of Bacillus velezensis SDTB038 against Phytophthora infestans in potato[J]. Plant Disease. 105(6): 1738-1747. [31] Zaid D S, Cai S Y, Hu C, et al.2022. Comparative genome analysis reveals phylogenetic identity of Bacillus velezensis HNA3 and genomic insights into its plant growth promotion and biocontrol effects[J/OL]. Microbiology Spectrum, 10(1): e0216921. [32] Zhao J, Zhou Z, Bai X, et al.2022. A novel of new class II bacteriocin from Bacillus velezensis HN-Q-8 and its antibacterial activity on Streptomyces scabies[J/]. Frontiers in Microbiology, 13: 943232.