Abstract:Maiwa yak (Bos grunniens) is a local superior seed of Qinghai-Tibet Plateau yak. Previous studies have shown that the coat color of Maiwa yak is related to its production performance and can be used as the basis for breeding. Previous research has shown that the grey coat trait in Maiwa yak is associated with the expression level of the syntaxin-17 (STX17) gene. The STX17 protein is involved in the fusion process of lysosomes and autophagosomes, playing an important role in the synthesis, transport of melanin, and the development of melanoma. To investigate the correlation between the STX17 gene and coat color formation in Maiwa yak, 3 healthy adult male black and grey Maiwa yaks aged 3 years were selected in this study, and their heart, spleen, lung, kidney and skin tissues were selected as experimental materials. The CDS sequence of the STX17 gene were cloned by PCR, and bioinformatics analysis was carried out by using on line software, the expression of the STX17 gene was detected in different tissues and coat populations of Maiwa yak by qRT-PCR. The results showed that the CDS region of the STX17 gene in Maiwa yak was 909 bp, encodimg protein contained 302 amino acids with a theoretical value of isoelectric point (pI) of 5.82, which was an acidic protein, the STX17 protein did not have a signal peptide sequence, and there was 1 target membrane-associated soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) domain and 2 tandem transmembrane domains; Subcellular localisation predicted that the STX17 protein mainly existed in the cytoplasm. The nucleotide sequence comparison showed that the STX17 gene in Maiwa yak was most closely related to Bos taurus, followed by Bubalis bubalus. The STX17 protein was closely related to autophagy-related protein 14 (ATG14), synaptosome associated protein of 29 (SNAP29), vesicle associated membrane protein 7 (VAMP7), vesicle associated membrane protein 8 (VAMP8), synaptobrevin homolog (YKT6) and other proteins. The qRT-PCR results showed that the STX17 gene had the highest expression in skin tissues, and the expression in the skin of grey Maiwa yak was higher than black Maiwa yak, it was hypothesized that the STX17 gene was related to the formation of grey and black coat color in Maiwa yak. This study provides theoretical basis for the subsequent studies on the regulatory mechanism of coat color in Maiwa yak.
[1] 傅芳, 王利, 罗晓林, 等. 2021. 牦牛IGFBP4和IGFBP5基因的克隆及其在各组织和不同生长阶段肝中的差异表达分析[J]. 畜牧兽医学报, 52(07): 1858-1868.(Fu F, Wang L, Luo X L, et al.2021. Cloning of yak IGFBP4 and IGFBP5 genes and their expression patterns in different tissues and liver in different growth stages[J]. Chinese Journal of Animal and Veterinary Sciences, 52(07): 1858-1868. ) [2] 郭梁, 王吉坤, 王会, 等. 2019. 牦牛SMPX基因CDS区克隆及组织表达分析[J]. 中国畜牧兽医, 46(05): 1273-1282.(Guo L, Wang J K, Wang H, et al.2019. CDS cloning and tissue expression analysis of SMPX gene in Bos grunniens[J]. China Animal Husbandry & Veterinary Medicine, 46(05): 1273-1282. ) [3] 姜申达. 2022. 蛋白质α螺旋结构折叠机制和动力学特性研究[D]. 硕士学位论文, 哈尔滨工业大学, 导师: 杨霖. pp. 5-13.(Jiang S D.2022. Study on the folding mechanism and dynamic characteristics of alphahelix in protein structure[D]. Thesis for M.S., Harbin Institute of Technology, Supervisor: Yang L. pp. 5-13.) [4] 李蓓, 何小龙, 芒来. 2011. 蒙古马突触融合蛋白17 (STX17)基因多态性及在不同毛色皮肤组织中的表达分析[J]. 畜牧兽医学报, 42(11): 1632-1637.(Li B, He X L, Mang L.2011. Analysis on polymorphism and expression in different coat color skin of syntaxin-17 (STX17) genein Mongolian horse[J]. Chinese Journal of Animal and Veterinary Sciences, 42(11): 1632-1637.) [5] 李蓓, 何小龙, 赵一萍, 等. 2010. 马毛色遗传的分子基础与应用[J]. 遗传, 32(11): 1133-1140.(Li B, He X L, Zhao Y P, et al.2010. Molecular basis and applicability in equine color genetics[J]. Hereditas, 32(11): 1133-1140.) [6] 李瑞丽, 万明春, 严寒, 等. 2021. 麦洼牦牛和西门塔尔牛肉营养品质与感官特性的比较研究[J]. 畜牧与兽医, 53(12): 23-27.(Li R L, Wan M C, Yan H, et al.2021. Comparative study on the meat nutritional and sensory quality characteristics of Maiwa yak and Simmental cattle[J]. Animal Husbandry and Veterinary Medicine, 53(12): 23-27.) [7] 李世林, 罗光荣, 肖敏, 等. 2014. 不同特征麦洼牦牛生产性能分析[J]. 草业与畜牧, (03): 30-32.(Li S L ,Luo G R ,Xiao M, et al. 2014. Comparing the production performance between Maiwa Yaks with different coat colors[J]. Prataculture Animal Husbandry, (03): 30-32.) [8] 李诗颖. 2018. ASIP、KIT和STX17基因多态性与驴毛色的相关性研究[D]. 硕士学位论文, 西北农林科技大学, 导师: 雷初朝. pp28-33.(LI S Y. 2018. Association of ASIP, KIT and STX17 gene polymorphisms with donkey's coat color[D]. Thesis for M.S., Northwest A & F University, Supervisor: Lei C C. pp28-33.) [9] 李在文, 李响, 李小伟, 等. 2023. 基于GBS简化基因组测序数据重建麦洼牦牛保种群系谱[J]. 畜牧兽医学报, 54(09): 3710-3721.(Li Z W, Li X, Li X W, et al.2023. The pedigree reconstruction of the Maiwa yak preserved population based on GBS technology[J]. Journal of Animal Husbandry and Veterinary Medicine, 54(09): 3710-3721.) [10] 李铸, 吴锦波, 刘建, 等. 2022. 金川牦牛和麦洼牦牛肌肉水分、pH值、色差及肌纤维特性分析[J]. 现代畜牧兽医, (10): 38-42.(Li Z, Wu J B, Liu J, et al. 2022. Study on moisture content, pH value, color difference and muscle fiber characteristics of Jinchuan yak and Maiwa yak[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, (10): 38-42. ) [11] 刘小禹, 王国文, 舒适, 等. 2024. 哺乳动物毛色形成过程及黑色素细胞标志物研究进展[J]. 饲料研究, 47(08): 165-169.(Liu X Y, Wang G W, Shu S, et al.2024. Research progress on formation process of mammalian fur color and melanocyte markers[J]. Feed Research, 47(08): 165-169.) [12] 马士龙, 李小伟, 李响, 等. 2022. 基于GBS简化基因组测序评估3个麦洼牦牛保种群的遗传结构研究[J]. 草业学报, 31(09): 183-194.(Ma S L, Li X W, Li X, et al.2022. Assessment of genetic structure of 3 Maiwa yak preserved populations based on genotyping-by-sequencing technology[J]. Acta Prataculturae Sinica, 31(09): 183-194.) [13] 王佳倩, 何红云, 邓仪昊. 2024. 脑缺血后溶酶体功能障碍致自噬流损伤机制的研究进展[J]. 生理学报, 76(5): 783-790.(Wang J Q, He H Y, Deng Y H.2024. Research progress on the mechanism of autophagy flow injury caused by lysosomal dysfunction after cerebral ischemia[J]. Acta Physiologica Sinica, 76(5): 783-790.) [14] 王宁, 周秀雅, 何星鸿. 2022. 突触融合蛋白17改善Aβ31-35诱导的小鼠海马神经细胞死亡[J]. 陆军军医大学学报, 44(17): 1712-1719.(Wang N, Zhou X Y,He X H.2022. STX17 improves Aβ31-35 induced death of hippocampal neurons in mice[J]. Journal of Army Medical University, 44(17): 1712-1719.) [15] 王燕文, 李小伟, 何小强, 等. 2024. 麦洼牦牛程序化人工授精技术操作规程[J]. 现代畜牧科技, 105(02): 86-88.(Wang Y W, Li X W, He X Q, et al. 2024. Operation procedure of programmed artificial insemination technology of Maiwa yak[J]. Modern Animal Husbandry Science & Technology, 105(02): 86-88.) [16] 银忠. 2011. 强化种畜场职能促进牦牛业发展[J]. 草业与畜牧, (12): 61-62.(Yin Z. 2011. Strengthening the function of breeding farm to promote the development of yak industry[J]. Grass Industry and Animal Husbandry, (12): 61-62. ) [17] 张丹瑾, 谢建山, 申艳, 等. 2015. STX17在不同毛色小鼠皮肤中差异表达与在毛囊中的定位[J]. 中国生物化学与分子生物学报, 31(10): 1109-1116.(Zhang D J, Xie J S, Shen Y, et al.2015. Localization of syntaxin17 in hair follicles and expression in the skin of different coat color mice[J]. Chinese Journal of Biochemistry Molecular Biology, 31(10): 1109-1116.) [18] 张剑搏, 丁学智, Anum AA, 等. 2019. 高原土著动物适应性进化的研究进展[J]. 畜牧兽医学报, 50(09): 1723-1736.(Zhang J B, Ding X Z, Anum A A, et al.2019. Advances in research on adaptive evolution of native animals of Tibetan plateau[J]. Journal of Animal Husbandry and Veterinary Medicine, 50(09): 1723-1736.) [19] 周凡莉, 刘晓霞, 何小强, 等. 2021. 麦洼牦牛选育初探[J]. 草学,(04): 73-75+79. [20] Berwick M, Wiggins C.2006. The current epidemiology of cutaneous malignant melanoma[J]. Frontiers in Bioscience: A Journal And Virtual Library, 11: 1244-1254. [21] Cannon-Albright L A, Goldgar D E, Meyer L J, et al.1992. Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p22[J]. Science, 258(5085): 1148-1152. [22] De Snoo F A, Hayward N K.2005. Cutaneous melanoma susceptibility and progression genes[J]. Cancer Letters, 230(2): 153-186. [23] Hamzeiy H, Ferrrtti D, Robles M S, et al.2022. Perseus plugin Metis for metabolic-pathway-centerd quantitative multi-omics data analysis for static and time-series experimental designs[J]. Cell Reports Methods, 2(4): 100198. [24] Itakura E, Kishi-Itakura C, Mizushima N.2012. The hairpin-type tail-anchored snare syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes[J]. Cell, 151(6): 1256-1269. [25] Itakura E, Mizushima N.2013. Syntaxin 17: the autophagosomal SNARE[J]. Autophagy, 9(6): 917-919. [26] Jian F, Wang S, Tian R, et al.2024. The STX17-SNAP47-VAMP7/VAMP8 complex is the default SNARE complex mediating autophagosome-lysosome fusion[J]. Cell Research, 34: 151-168. [27] Kumar S, Jain A, Farzam F, et al.2018. Mechanism of Stx17 recruitment to autophagosomes via IRGM and mammalian Atg8 proteins[J]. Journal of Cell Biology, 217(3): 997-1013. [28] Lin P W, Chu M L, Liu H S.2021. Autophagy and metabolism[J]. Kaohsiung Journal of Medical Sciences, 37(1): 12-19. [29] Locke M M, Penedo M C, Bricker S J, et al.2002. Linkage of the grey coat colour locus to microsatellites on horse chromosome 25[J]. Animal Genetics, 33(5): 329-337. [30] Matsui T, Jiang P, Nakano S, et al.2018. Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17[J]. Journal of Cell Biology, 217(8): 2633-2645. [31] Muppirala M, Gupta V, Swarup G.2011. Syntaxin 17 cycles between the ER and ERGIC and is required to maintain the architecture of ERGIC and Golgi[J]. Biology of the Cell, 103(7): 333-350. [32] Peng X B, Liu J J, Dai J, et al.2020. Application of topological soliton in modeling protein folding: Recent progress and perspective[J]. Chinese Physics B, 29(10): 108705. [33] Rosengren P G, Golovko A, Sundström E, et al.2008. A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse[J]. Nature Genetics, 40(8): 1004-9. [34] Saitou N, Nei M.1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 4(4):406-25. [35] Steegmaier M, Oorschot V, Klumperman J, et al.2000. Syntaxin 17 is abundant in steroidogenic cells and implicated in smooth endoplasmic reticulum membrane dynamics[J]. Molecular Biology of the Cell, 11(8): 2719-2731. [36] Takáts S, Glatz G, Szenci G, et al.2018. Non-canonical role of the SNARE protein Ykt6 in autophagosome-lysosome fusion[J]. PLOS Genetics, 14(4): e1007359. [37] Tian X, Teng J, Chen J.2021. New insights regarding SNARE proteins in autophagosome-lysosome fusion[J]. Autophagy, 17(10): 2680-2688. [38] Trick AY, Chen FE, Schares JA, et al.2021. High resolution estimates of relative gene abundance with quantitative ratiometric regression PCR (qRR-PCR)[J]. Analyst, 146(21): 6463-6469. [39] Wang S, Osgood A O, Chatterjee A.2022. Uncovering post-translational modification-associated protein-protein interactions[J]. Current Opinion In Structural Biology, 74: 102352. [40] Zhang Q, Li J, Deavers M,et al.2005. The subcellular localization of syntaxin 17 varies among different cell types and is altered in some malignant cells[J]. Journal of Histochemistry & Cytochemistry, 53(11): 1371-1382. [41] Zheng D, Tong M, Zhang S, et al.2024. Human YKT6 forms priming complex with STX17 and SNAP29 to facilitate autophagosome-lysosome fusion[J]. Cell Reports, 43(2): 113760.