Cloning and Expression Analysis of CmWRKY7 Gene in Melon (Cucumis melo)
LI Jia-Qi1, ZHANG Li-Chao2, ZHAO Wang-Long1, CHEN Chun-Lin1, WANG Ji-Qing1, LI Meng1,*, XIAO Huai-Juan1,*
1 College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; 2 Technology Service Center on Ecological Planting of Chinese Herbal Medicine in Chengde, Chengde 067000, China
Abstract:In plants, WRKY transcription factors play a crucial role in responding to biotic and abiotic stresses. To explore the biological function of WRKY gene in defense against abiotic stress in melon (Cucumis melo), a candidate gene strongly induced by low temperature, CmWRKY7, was screened based on pre transcriptome sequencing. In this study, CmWRKY7 was cloned, and the molecular characteristics of its encoded protein were analyzed using bioinformatics methods. The expression patterns of CmWRKY7 under different stresses were detected by qRT-PCR, including low temperature, drought, salt, and ABA stress. Results showed that the total length of CmWRKY7 was 732 bp, encoding 243 amino acids, with a predicted molecular weight of 27.09 kD and a theoretical isoelectric point of 9.50. It was a hydrophilic protein with an aliphatic amino acid index of 64.20 and high thermal stability. The CmWRKY7 protein sequence contained 2 highly conserved domains: The WRKYGKK and the C2H2 zinc finger structural sequence (C-X4-C-X23-H-X-H). Moreover, the CmWRKY7 protein also contained 26 amino acid residues that might be phosphorylation modification sites, 7 protein kinase C phosphorylation sites, 4 N-myristoylation sites, and 1 tyrosine kinase phosphorylation site. The secondary structure of CmWRKY7 protein was dominated by irregular coils, accounting for 62.14%. Phylogenetic analysis showed that CmWRKY7 had the closest evolutionary relationship with the proteins of cucumber (C. sativus) and horned melon (C. metuliferus), gathering into one branch. Promoter prediction analysis showed that there were multiple hormone and stress-related cis acting elements on the CmWRKY7 promoter, and protein interaction prediction analysis showed that CmWRKY7 mostly interacted with stress-related proteins. Under abiotic stress, the CmWRKY7 gene participated in ABA signal transduction and actively responded to drought, high salt, and low temperature stresses. These results provided theoretical basis for further studying the biological function of CmWRKY7 and its application in melon breeding for abiotic stress resistance.
[1] 白雪. 2020. CsWRKY46基因参与盐胁迫的表达特征与功能分析[D]. 硕士学位论文, 沈阳师范大学, 导师: 张颖. pp. 36. (Bai X.2020. Expression characteristics and functional analysis of CsWRKY46 gene involved in salt stress[D]. Thesis for M.S., Shenyang Normal University, Supervisor: Zhang Y, pp. 36.) [2] 陈波浪, 吴海华, 罗佳, 等. 2016. 施磷对立架甜瓜干物质积累及磷肥利用效率的影响[J]. 应用生态学报, 27(2): 511-518. (Chen B L, Wu H H, Luo J, et al.2016. Effects of phosphorus fertilization on biomass accumulation and phosphorus use efficiency of trellis-cultivated melon[J]. Chinese Journal of Applied Ecology, 27(2): 511-518.) [3] 陈丽飞, 李嘉峻, 刘云怡慧, 等. 2023. 干旱胁迫下大苞萱草WRKY基因家族成员鉴定及生物信息学分析[J]. 河南农业科学, 52(2): 113-123. (Chen L F, Li J J, Liu Y Y H, et al.2023. Identification and bioinformatics analysis of WRKY gene family members in Hemerocallis middendorffii under drought stress[J]. Journal of Henan Agricultural Sciences, 52(2): 113-123.) [4] 陈思雀, 翁群清, 曹红瑞, 等. 2017. WRKY转录因子在生物和非生物胁迫中的功能和调控机理的研究进展[J]. 农业生物技术学报, 25(4): 668-682. (Chen S Q, Wong Q Q, Cao H R, et al.2017. The functions and regulation mechanisms of WRKY transcription factors in response to biotic and abiotic stresses[J]. Journal of Agricultural Biotechnology, 25(4): 668-682.) [5] 高新斌. 2022. 黄瓜CsWRKY27抗病功能初步鉴定及其互作因子的筛选[D]. 硕士学位论文, 山东农业大学, 导师: 任仲海, pp. 21-37. (Gao X B.2022. Preliminary functional identification of CsWRKY27 in cucumber disease resistance and screening of its interacting factors[D]. Thesis for M.S., Shandong Agricultural University, Supervisor: Ren Z H, pp. 21-37.) [6] 高哲. 2022. ACBD3与Cpn0308互作机制的初探[D]. 硕士学位论文, 河北北方学院, 导师: 贾天军, pp. 40-44. (Gao Z.2022. Preliminary study on the interaction mechanism between cpn0308 and ACBD3[D]. Thesis for M.S., Hebei North University, Supervisor: Jia T J, pp. 40-44.) [7] 洪克前, 谷会, 陈丽. 2021. 香蕉MaWRKY1转录因子在果实和幼苗诱导抗冷性中表达分析[J]. 热带作物学报, 42(2): 303-309. (Hong K Q, Gu H, Chen L.2021. Expression analysis of MaWRKY1 factor in inducing chilling resis-tance of banana fruits and seedlings[J]. Chinese Journal of Tropical Crops, 42(2): 303-309.) [8] 胡小丽, 董德坤, 杨海英, 等. 2011. 转化GmWRKY21基因提高大豆耐低温性的研究[J]. 浙江农业学报, 23(4): 661-666. (Hu X L, Dong D K, Yang H Y, et al.2011. Study on improving low temperature tolerance of soybean by transforming GmWRKY21 gene[J]. Acta Agriculturae Zhejiangensis, 23(4): 661-666.) [9] 黄幸, 丁峰, 彭宏祥, 等. 2019. 植物WRKY转录因子家族研究进展[J]. 生物技术通报, 35(12): 129-143. (Huang X,Ding F, Peng H X, et al.2019. Research progress on family of plant WRKY transcription factors[J]. Biotechnology Bulletin, 35(12): 129-143.) [10] 李森, 王庆杰, 陈修德, 等. 2021. 桃WRKY转录因子PpWRKY18克隆及表达分析[J]. 核农学报, 35(9): 1987-1993. (Li S, Wang Q J, Chen X D, et al.2021. Cloning and expression analysis of transcription factor PpWRKY18 in peach[J]. Journal of Nuclear Agricultural Sciences, 35(9): 1987-1993.) [11] 李秀兰, 姜曰水. 2018. PPR蛋白调控植物细胞器RNA加工的分子功能[J]. 中国生物化学与分子生物学报, 34(7): 713-718. (Li X L, Jiang Y S.2018. The roles of PPR proteins on plant organelle RNA processing[J]. Chinese Journal of Biochemistry and Molecular Biology,34(7): 713-718.) [12] 凌键. 2012. 黄瓜WRKY基因家族及microRNA的鉴定与分析[D]. 博士学位论文, 中国农业科学院, 导师: 谢丙炎, pp. 10-50. (Ling J.2012. Genome-wide identification and analysis of WRKY gene family and microRNA in Cucumis sativus[D]. Thesis for Ph.D., Chinese Academy of Agricultural Sciences, Supervisor: Xie B Y, pp. 10-50.) [13] 刘苗苗, 臧连生, 孙晓玲, 等. 2021. 茶树WRKY转录因子CsWRKY17的克隆与表达分析[J]. 茶叶科学, 41(5): 631-642. (Liu M M, Zang L S, Sun X L, et al.2021. Cloning and expression analysis of CsWRKY17 transcription factor in tea plants[J]. Journal of Tea Science,41(5): 631-642.) [14] 刘越. 2018. 西瓜WRKY家族基因分析及低温响应WRKY基因功能鉴定[D]. 硕士学位论文, 华中农业大学, 导师: 孔秋生, pp. 52. (Liu Y.2018. Identification of WRKY family genes and function characterization of low temperature responsive WRKYs in watermelon[D].Thesis for M.S., Huazhong Agricultural University, Supervisor: Kong Q S, pp. 52.) [15] 卢晓婷, 殷菲胧, 刘纯友, 等. 黄瓜低温胁迫响应基因WRKY51的生物信息学及表达分析[J/OL]. 分子植物育种. Bioinformatics and expression analysis of cucumber cold stress response gene WRKY51[J/OL]. Molecular Plant Breeding. https://kns.cnki.net/kcms/detail/46.1068.S.20230308.1858.008.html [16] 马丽荣, 商桑, 田丽波, 等. 2022. 苦瓜McWRKY16基因克隆及表达分析[J]. 分子植物育种, 20(24): 8051-8063. (Ma L R, Shang S, Tian L B, et al.2022. Cloning and expression analysis of McWRKY16 gene in Momordica charantia[J]. Molecular Plant Breeding,20(24):8051-8063.) [17] 欧阳梦真. 2020. 西瓜ClWRKY20基因的耐低温和高盐功能鉴定及其调控机制研究[D]. 硕士学位论文, 河南农业大学, 导师: 孙志强, 李严曼. pp. 49. (OuYang M Z.2020. The function identification and regulation mechanism study of CIWRKY20 in watermelon under low temperature and high salt stresses[D]. Thesis for M.S., Henan Agricultural University, Supervisor: Sun Z Q, Li Y M, pp. 49.) [18] 秦玉杰, 任辉, 祝建波. 2024. 甜瓜MADS-box基因家族的鉴定及系统进化分析[J]. 分子植物育种, 22(5): 1430-1443. (Qin Y J, Ren H, Zhu J B.2024. Genome-wide survey and phylogenetic analysis of MADS-box gene family in Cucumis melo L.[J]. Molecular Plant Breeding, 22(5): 1430-1443.) [19] 王继源, 王丽, 纠松涛, 等. 2022. 甜樱桃PavMYC2基因克隆与表达分析[J]. 果树学报, 39(5): 701-711. (Wang J Y,Wang L, Jiu S T, et al.2022. Cloning and expression analysis of PavMYC2 gene in Prunus avium L.[J]. Journal of Fruit Science, 39(5): 701-711.) [20] 王军, 于淼. 2010. 葡萄次生代谢UDP-糖基转移酶研究进展[J]. 园艺学报, 37(01): 141-150. (Wang J,Yu M.2010. Research progress on UDP-glycosyltransferases in grape secondary metabolism pathway[J]. Acta Horticulturae Sinica, 37(01): 141-150.) [21] 王娜, 张振葆, 黄凤珠, 等. 2014. WRKY转录因子参与植物非生物胁迫应答的研究进展[J]. 核农学报, 28(10): 1819-1827. (Wang N, Zhang Z B, Huang F Z, et al.2014. Advance on the role of WRKY transcription factors in abiotic stress response[J]. Journal of Nuclear Agricultural Sciences, 28(10): 1819-1827.) [22] 王兴国, 何博源, 赵春香. 2016. 春季保护地甜瓜栽培技术[J]. 吉林蔬菜, (7): 9-11. (Wang X G, He B Y, Zhao C X. 2016. Cultivation techniques of muskmelon in spring protected areas[J]. Jilin Vegetable, (7): 9-11.) [23] 吴萌萌. 2022. 桑树盐胁迫相关基因的克隆及功能分析[D].硕士学位论文, 江苏科技大学, 导师: 赵卫国, 方荣俊, pp. 100. (Wu M M.2022. Cloning and functional analysis of genes related to salt stress in mulberry[D]. Thesis for M.S., Jiangsu University of Science and Technology, Supervisor: Zhao W G, Fang R J, pp. 100.). [24] 相立, 赵蕾, 王玫, 等. 2022. 苹果MdWRKY74的克隆和功能分析[J]. 园艺学报, 49(3): 482-492. (Xiang L, Zhao L, Wang M, et al.2022. Cloning and functional analysis of MdWRKY74 in apple[J]. Acta Horticulturae Sinica, 49(3): 482-492.) [25] 徐群刚, 邝健飞, 单伟, 等. 2015. 香蕉果实冷胁迫相关MaWRKY11转录因子的特性, 互作蛋白筛选与鉴定[J]. 热带亚热带植物学报, 23(5): 543-552. (Xu Q G,Kuang J F, Shan W, et al.2015. Characterization and interaction-protein identification of MaWRKY11 transcription factor related to cold stress from banana fruits[J]. Journal of Tropical and Subtropical Botany, 23(5): 543-552.) [26] 薛琴. 2020. 甜瓜CmWRKY27调控盐胁迫响应的机理研究[D]. 硕士学位论文, 浙江大学, 导师: 胡仲远. pp. 46. (Xue Q.2020. Study on the regulatory mechanism of CmWRKY27 in response to salt stress in melo[D]. Thesis for M.S., Zhejiang University, Supervisor: Hu Z Y, pp. 46.) [27] 杨柳. 2019. 干旱胁迫下'平邑甜茶'转录组分析和MdWRKY40基因功能验证[D]. 硕士学位论文, 河南农业大学, 导师: 郑先波, 宋春晖. pp. 48. (Yang L.2019. The transcriptome analysis of Malus hupehensis under drought stress and functional verification of MDWRKY40 gene[D]. Thesis for M.S., Henan Agricultural University, Supervisor: Zheng X B, Song C H, pp. 48.) [28] 杨敏, 李庆萌, 周陈平, 等. 2023. 番木瓜WRKY转录因子CpWRKY11的克隆和表达[J]. 西北农林科技大学学报, 51(5): 119-138. (Yang M, Li Q M, Zhou C P, et al.2023. Cloning and expression analysis of transcription factor CpWRKY11 in papaya (Carica papaya L.)[J]. Journal of Northwest A&F University (Natural Science Edition), 51(5): 119-138.) [29] 张高原, 魏兵强. 2020. 甜瓜WRKY基因家族鉴定及其响应低温胁迫的表达分析[J]. 农业生物技术学报, 28(10): 1761-1775. (Zhang G Y, Wei B Q.2020. Identification of WRKY gene family and their expression analysis under low-temperature stress in melon (Cucumis melo)[J]. Journal of Agricultural Biotehnology, 28(10): 1761-1775.) [30] 张明星. 2022. OsWRKY63调控水稻耐冷性的分子机制研究[D]. 博士学位论文, 吉林大学, 导师: 都兴林. pp. 118. (Zhang M X.2022. Molecular mechanism of OsWRKY63 regulating cold tolerance in rice (Oryza sativa L.)[D]. Thesis for Ph.D., Jilin University, Supervisor: Du X L, pp. 118.) [31] 张榕蓉, 王雅慧, 李彤, 等. 2019. 胡萝卜WRKY69基因(DcWRKY69)的克隆及其对不同植物生长调节剂的响应[J]. 植物资源与环境学报, 28(4): 1-10. (Zhang R R,Wang Y H, Li T, et al.2019. Cloning of WRKY69 gene in Daucus carota var. sativa (DcWRKY69) and its response to different plant growth regulators[J]. Journal of Plant Resources and Environment, 28(4): 1-10.) [32] 张颖. 2012. 黄瓜低温胁迫应答转录因子CsWRKY46和CsWRKY21的表达特征与功能分析[D]. 博士学位论文, 中国农业科学院, 导师: 蒋卫杰. pp. 77. (Zhang Y.2012. Expression characteristics and functional analysis of CsWRKY46 and CsWRKY21 response to chilling in cucumber[D]. Thesis for Ph.D., Chinese Academy of Agricultural Sciences, Supervisor: Jiang W J, pp. 77.) [33] 赵静玮. 2021. 黄花苜蓿MfNAC48、MfWRKY3和MfWRKY22基因的克隆及特性分析[D]. 硕士学位论文, 内蒙古大学, 导师: 张立全, pp. 27-59. (Zhao J W.2021. Cloning and characterization of MfNAC48, MfWRKY3 and MfWRKY22 genes in Medicago falcata[D]. Thesis for M.S., Inner Mongolia University, Supervisor: Zhang L Q, pp. 27-59.) [34] 赵望龙, 李嘉琪, 李猛, 等. 2023. 甜瓜组氨酸磷酸转运蛋白AHP家族的基因鉴定及表达分析[J]. 农业生物技术学报, 31(9): 1804-1815. (Zhao W L, LI J Q, Li M, et al.2023. Gene identification and expression analysis of histidine phosphotransfer protein AHP family in melon (Cucumis melo)[J]. Journal of Agricultural Biotehnology, 31(9): 1804-1815.) [35] Chen J N.2017. Functions and mechanism of WRKY transcription factors in brassinosteroid-regulated plant growth and stress response[D]. Thesis for Ph.D., Lowa State University, Supervisor: Yin Y H, pp. 18. [36] Dong Q L, Tian Y, Zhang X M, et al.2024. Overexpression of the transcription factor MdWRKY115 improves drought and osmotic stress tolerance by directly binding to the MdRD22 promoter in apple[J]. Horticultural Plant Journal, 10(3): 629-640. [37] Li M, Duan X Y, Wang Q, et al.2020. A new morphological method to identify cold tolerance of melon at seedling stage[J]. Functional Plant Biology, 47: 80-90. [38] Liang Q Y, Wu Y H, Wang K, et al.2017. Chrysanthemum WRKY gene DgWRKY5 enhances tolerance to salt stress in transgenic Chrysanthemum[J]. Scientific Reports, 7(1): 4799. [39] Liu D T, Cao J, Xu K.2014. Analyses of the UBX protein family in Populus and Vitis[J]. Plant Diversity, 36(03): 349-357. [40] Liu X F, Song Y Z, Xing F Y, et al.2016. GhWRKY25,a group Ⅰ WRKY gene from cotton, confers differential tolerance to abiotic and biotic stresses in transgenic Nicotiana benthamiana[J]. Protoplasma, 253(5): 1265-1281. [41] Niu C F, Wei W, Zhou Q Y, et al.2012. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants[J]. Plant Cell & Environment, 35(6): 1156-1170. [42] Rushton P J, Somssich I E, Ringler P, et al.2010. WRKY transcription factors[J]. Trends in Plant Science, 15(5): 247-258. [43] Wang J Y, Wang L J, Yan Y, et al.2020. GhWRKY21 regulates ABA-mediated drought tolerance by fine-tuning the expression of GhHAB in cotton[J]. Plant Cell Reports, 40(11): 2135-2150. [44] Wang L X, Wu X T, Xing Q J, et al.2023. PIF8-WRKY42-mediated salicylic acid synthesis modulates red light induced powdery mildew resistance in oriental melon[J]. Plant, Cell & Environment, 46(5): 1726-1742. [45] Wang M, Vannozzi A, Wang G.2014. Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family[J]. Horticulture Research, 1: 14016. [46] Zhang K, Liu F, Wang Z X, et al.2022. Transcription factor WRKY28 curbs WRKY33-mediated resistance to Sclerotinia sclerotium in Brassica napus[J]. Plant Physiology, 190(4): 2757-2774. [47] Zhang Y, Wang L.2005. The WRKY transcription factor super family:Its origin in eukaryotes and expansion in plants[J]. BMC Evolutionary Biology, 5: 1-12. [48] Zhao K X, Chu S S, Zhang X D, et al.2020. AtWRKY21 negatively regulates tolerance to osmotic stress in Arabidopsis[J]. Environmental and Experimental Botany, 169: 103920. [49] Zhu D, Che Y, Xiao P, et al.2018. Functional analysis of a grape WRKY30 gene in drought resistance[J]. Plant Cell Tissue and Organ Culture, 132(11): 449-459. [50] Zhu H, Jiang Y N, Guo Y, et al.2021. A novel salt inducible WRKY transcription factor gene,AhWRKY75,confers salt tolerance in transgenic peanut[J]. Plant Physiology and Biochemistry, 160: 175-183.