Preliminary Functional Characterization of the Histone Demethylase Gene GbJMJ25 from Sea Island Cotton (Gossypium barbadense) in Response to Drought Stress
WANG Xiao-Yun, LI Yue, Maiwulan• TUERSUN, Miheriba• ALIMU, SUN Xing-Ju, ZHANG Xia*
Department of Biotechnology, College of Life Sciences, Xinjiang Agricultural University, Urumqi 830052, China
Abstract:Sea Island cotton (Gossypium barbadense) is renowned for its superior fiber quality and high economic value. However, drought stress significantly impacts its yield and fiber quality. Identifying drought stress-related genes as candidate genes for molecular design breeding is one of the key strategies to enhance drought resistance in Sea Island cotton. In this study, the gene GbJMJ25 (JMJ: Jumonji), encoding a histone demethylase in Sea Island cotton, was cloned using RT-PCR. Bioinformatics analysis, expression profiling, and subcellular localization of GbJMJ25 were conducted, and its potential role in drought stress response was preliminarily validated using virus-induced gene silencing (VIGS) technology. Bioinformatics analysis revealed that GbJMJ25 encoded a protein of 1 055 amino acids, containing 2 conserved domains, RING and JmjC. The promoter region of GbJMJ25 contained multiple cis-acting elements related to light response, growth and development, and stress response. Expression pattern analysis demonstrated that GbJMJ25 was responsive to abscisic acid (ABA) and polyethylene glycol (PEG) treatments. Subcellular localization analysis indicated that GbJMJ25 protein was localized in the nucleus. Functional validation via VIGS technology showed that under normal conditions, GbJMJ25-silenced cotton plants exhibited no significant phenotypic differences compared with the control (pTRV2) plants. However, under drought stress, GbJMJ25-silenced plants displayed enhanced tolerance, with a higher survival rate than the control, suggesting that GbJMJ25 might play a role in cotton's drought stress response. The results of this study provide candidate genes for improving drought resistance in Sea Island cotton through molecular design breeding.
[1] 白玉林, 刘露, 王承强, 等. 2024. 不同品质类型海岛棉可纺性研究[J]. 安徽农业科学, 52(21): 159-162. (Bai Y L, Liu L, Wang C Q, et al.2024. Study on the spinnability of island cotton of different quality types[J]. Journal of Anhui Agricultural Sciences, 52(21): 159-162.) [2] 龚束芳, 初明洋, 杨雅涵, 等. 2022. 脱水诱导基因RD特性及功能[J]. 中国科学院大学学报, 39(2): 154-164. (Gong S F, Chu M Y, Yang Y H, et al.2022. Research of dehydration-inducible gene RD in characterization and function[J]. Journal of University of Chinese Academy of Sciences, 39(2): 154-164.) [3] 黄启秀. 2017. 海岛棉类黄酮代谢途径中与枯萎病抗性相关基因的克隆及功能验证[D]. 硕士学位论文, 新疆农业大学, 导师: 曲延英, pp. 65. (Huang Q X. 2017. Cloning and functional verification of genes related to Fusarium wilt resistance in flavonoid metabolism pathway of island cotton (Gossypium barbadense L.)[D]. Thesis for M. S., Xinjiang Agriculture University, Supervisor: Qu Y Y, pp. 65.) [4] 李静, 房震, 叶春秀. 2024. 新疆野苹果种子MsWRKY33基因的克隆、亚细胞定位及表达分析[J]. 西北农业学报, 33(12): 2328-2336. (Li J, Fang Z, Ye C X.2024. Cloning, subcellular localization and expression analysis of MsWRKY33 gene in Malus sieversii seeds[J]. Acta Agriculturae Boreali-occidentalis Sinica, 33(12): 2328-2336.) [5] 李梦. 2019. ABA 信号路径基因在棉花抗旱中的功能研究[D]. 硕士学位论文, 华中农业大学, 导师: 杨细燕, pp. 9. (Li M. 2019. Functional characterization of genes in ABA signal pathway in cotton in responsive to drought stress[D]. Thesis for M. S., Huazhong Agricultural University, Supervisor: Yang X Y, pp. 9.) [6] 李云霞, 王国栋, 刘瑜, 等. 2024. 新疆典型绿洲灌区土壤理化性状与盐分离子分布特征[J]. 农业机械学报, 55(7): 357-364. (Li Y X, Wang G D, Liu Y, et al.2024. Distribution characteristics of soil physicochemical properties and salt ions in typical oasis irrigation areas of Xinjiang[J]. Transactions of the Chinese Society for Agricultural Machinery, 55(7): 357-364.) [7] 王淑君, 曲延英, 倪志勇, 等. 2018. 转CarNAC1基因可提高棉花的抗旱性[J]. 干旱地区农业研究, 36(04): 272-281. (Wang S J, Qu Y Y, Nin Z Y, et al.2018. Transgenic CarNAC1 gene improves the drought resistance of cotton[J]. Agricultural Research in the Arid Areas, 36(04): 272-281.) [8] 徐龙勇, 陈德桂. 2010. 组蛋白去甲基化酶研究进展[J]. 生命科学, 22(02): 109-114. (Xu L Y, Chen D G.2010. Research progress and prospect of histone demethylases[J]. Chinese Bulletin of Life Sciences, 22(02): 109-114.) [9] 杨文静. 2016. JMJ706 参与水稻氧化胁迫的表观调控机制研究[D]. 硕士学位论文, 华中农业大学, 导师: 周道绣, pp. 37. (Yang W J. 2016. Study of epigenetic mechanisms of JMJ706 involving in rice oxidative stress response[D]. Thesis for M. S., Huazhong Agricultural University, Supervisor: Zhou D X, pp. 37.) [10] 张淼, 杨露露, 贾岩龙, 等. 2022. DNA甲基化和组蛋白甲基化修饰的表观遗传调控作用研究进展[J]. 生物技术通报, 38(07): 23-30. (Zhang M, Yang L L, Jia Y L, et al.2022. Research progress in the roles of DNA and histone methylations in epigenetic regulation[J]. Biotechnology Bulletin, 38(07): 23-30.) [11] 赵玉玲, 邵永杰, 郭金成, 等. 2024. 不同年份下陆地棉和海岛棉杂交F1代配合力及其稳定性分析[J]. 江苏农业科学, 52(7): 56-64. (Zhao Y L, Shao Y J, Guo J C, et al.2024. Combining ability and stability analysis of hybrid F1 generation of upland cotton and sea island cotton in different years[J]. Jiangsu Agricultural Sciences, 52(7): 56-64.) [12] Audonnet L, Shen Y, Zhou D X.2017. JMJ24 antagonizes histone H3K9 demethylase IBM1/JMJ25 function and interacts with RNAi pathways for gene silencing[J]. Gene Expression Patterns, 25-26: 1-7. [13] Chen K, Li G J, Bressan R A, et al.2020. Abscisic acid dynamics, signaling, and functions in plants[J]. Journal of Integrative Plant Biology, 62(1): 25-54. [14] Chen L, Zhang B, Xia L, et al.2023. The GhMAP3K62-GhMKK16-GhMPK32 kinase cascade regulates drought tolerance by activating GhEDT1-mediated ABA accumulation in cotton[J]. Journal of Advanced Research, 5113-5125. [15] Dabravolski S A, Isayenkov S V.2023.The role of anthocyanins in plant tolerance to drought and salt stresses[J]. Plants (Basel), 12(13): 2558. [16] Deng S L, Jang I C, Su L L, et al.2016. JMJ24 targets CHROMOMETHYLASE3 for proteasomal degradation in Arabidopsis[J]. Genes & Development, 30(3): 251-256. [17] Duan C G, Zhu J K, Cao X F.2018. Retrospective and perspective of plant epigenetics in China[J]. Journal of Genetics and Genomics, 45(11): 621-638. [18] Fan D, Wang X, Liu T, et al.2024. Epigenetic regulation of high light-induced anthocyanin biosynthesis by histone demethylase IBM1 in Arabidopsis[J]. New Phytologist, 242(6): 2570-2585. [19] Hou Y X, Wang L Y, Wang L, et al.2015. JMJ704 positively regulates rice defense response against Xanthomonas oryzae pv. oryzae infection via reducing H3K4me2/3 associated with negative disease resistance regulators[J]. BMC Plant Biology, 15: 286. [20] Huang S Z, Zhang A, Jin J B, et al.2019. Arabidopsis histone H3K4 demethylase JMJ17 functions in dehydration stress response[J]. The New Phytologist, 223(3): 1372-1387. [21] Hung F Y, Chen J H, Feng Y R, et al.2020. Arabidopsis JMJ29 is involved in trichome development by regulating the core trichome initiation gene GLABRA3[J]. The Plant Journal, 103(5): 1735-1743. [22] Klose R J, Kallin E M, Zhang Y.2006. JmjC-domain-containing proteins and histone demethylation[J]. Nature Reviews Genetics, 7(9): 715-727. [23] Kovacs D, Kalmar E, Torok Z, et al.2008. Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins[J]. Plant Physiology, 147(1): 381-390. [24] Li T, Chen X, Zhong X, et al.2013. Jumonji C domain protein JMJ705-mediated removal of histone H3 lysine 27 trimethylation is involved in defense-related gene activation in rice[J]. Plant Cell, 25: 4725-4736. [25] Lim C W, Baek W, Jung J, et al.2015. Function of ABA in stomatal defense against biotic and drought stresses[J]. International Journal of Molecular Sciences, 16(7): 15251-15270. [26] Lin Z, Li Y, Wang Y.et al.2021. Initiation and amplification of SnRK2 activation in abscisic acid signaling[J]. Nature Communications, 12(1): 2456-2456. [27] Lu F L, Li G L, Cui X, et al.2008. Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice[J]. Journal of Integrative Plant Biology, 50(7): 886-896. [28] Mao K, Yang J, Sun Y, et al.2024. MdbHLH160 is stabilized via reduced MdBT2-mediated degradation to promote MdSOD1 and MdDREB2A-like expression for apple drought tolerance[J]. Plant Physiology, 194(2): 1181-1203. [29] Ma S F, Zhang Z Q, Long Y Q, et al.2022. Evolutionary history and functional diversification of the JmjC domain-containing histone demethylase gene family in plants[J]. Plants, 11: 1041. [30] Sato H K, Takasaki H, Takahashi F, et al.2018. Arabidopsis thaliana NGATHA1 transcription factor induces ABA biosynthesis by activating NCED3 gene during dehydration stress[J]. Proceedings of the National Academy of Sciences of the USA, 115(47): E11178-E11187. [31] Shao Y, Wei G, Wang L, et al.2011. Genome-wide analysis of BURP domain-containing genes in Populus trichocarpa[J]. Journal of Integrative Plant Biology, 53(9): 743-755. [32] Shen Y, Chi Y H, Lu S, et al.2022. Involvement of JMJ15 in the dynamic change of genome-wide H3K4me3 in response to salt stress[J]. Frontiers in Plant Science, 13: 1009723. [33] Song T, Zhang Q, Wang H, et al.2018. OsJMJ703, a rice histone demethylase gene, plays key roles in plant development and responds to drought stress[J]. Plant Physiology and Biochemistry, 132: 183-188. [34] Sun Z M, Wang X Y, Qiao K K, et al.2021. Genome-wide analysis of JMJ-C histone demethylase family involved in salt-tolerance in Gossypium hirsutum L[J]. Plant Physiology and Biochemistry, 158: 420-433. [35] Teerawanichpan P, Xia Q, Caldwell S J, et al.2009. Protein storage vacuoles of Brassica napus zygotic embryos accumulate a BURP domain protein and perturbation of its production distorts the PSV[J]. Plant Molecular Biology. 71(4-5): 331-343. [36] Wang L, Wu N, Zhu Y, et al.2015. The divergence and positive selection of the plant-specific BURP-containing protein family[J]. Ecology and Evolution, 5(22): 5394-5412. [37] Wang Q, Liu P, Jing H, et al.2021a. JMJ27-mediated histone H3K9 demethylation positively regulates drought-stress responses in Arabidopsis[J]. New Phytologist, 232(1): 221-236. [38] Wang T J, Huang S Z, Zhang A, et al.2021b. JMJ17-WRKY40 and HY5-ABI5 modules regulate the expression of ABA-responsive genes in Arabidopsis[J]. The New Phytologist, 230(2): 567-584. [39] Wang Y, Xue X, Zhu J K, et al.2016. Demethylation of ERECTA receptor genes by IBM1 histone demethylase affects stomatal development[J]. Development, 143(23): 4452-4461. [40] Wu J, Ichihashi Y, Suzuki T, et al.2019. Abscisic acid-dependent histone demethylation during postgermination growth arrest in Arabidopsis[J]. Plant Cell and Environment, 42: 2198-2214. [41] Zhang H, Mao L, Xin M, et al.2022. Overexpression of GhABF3 increases cotton (Gossypium hirsutum L.) tolerance to salt and drought[J]. BMC Plant Biology, 22(1): 313-313. [42] Zhang P, He R, Yang J, et al.2023a. The long non-coding RNA DANA2 positively regulates drought tolerance by recruiting ERF84 to promote JMJ29-mediated histone demethylation[J]. Molecular Plant, 16(8): 1339-1353. [43] Zhang X, Wang X, Zhou B.2023b. CMIP6-projected changes in drought over Xinjiang, Northwest China[J]. International Journal of Climatology, 43(14): 6560-6577. [44] Zhao W, Wang X, Zhang Q, et al.2022. H3K36 demethylase JMJ710 negatively regulates drought tolerance by suppressing MYB48-1 expression in rice[J]. Plant Physiology, 189(2): 1050-1064. [45] Zheng S Z, Hu H M, Ren H M, et al.2019. The Arabidopsis H3K27me3 demethylase JUMONJI 13 is a temperature and photoperiod dependent flowering repressor[J]. Nature Communications, 10(1): 1303.