Abstract:Drought is one of the most important environmental factors affecting crop productivity in many regions. Although sunflower (Helianthus annuus) is tolerant to drought conditions, its tolerance mechanisms at the molecular level are less studied. Elucidating the complex mechanisms of drought tolerance in sunflower will accelerate the selection of new drought-resistant varieties. In this paper, functional genes and transcription factors (AP/ERF, bZIP, WRKY, HB, NAC, MYB, bHLH, etc.) involved in drought stress response in sunflower are summarized. Finally, the current research is summarized and the future development trend is given in the hope that these candidate genes and transcription factors can be used as a potential biotechnological tool for future resolution and improvement of drought resistance and yield of sunflower.
石慧敏, 邬阳, 苏飞燕, 李丹丹, 侯建华. 向日葵干旱胁迫相关基因和转录因子研究进展[J]. 农业生物技术学报, 2023, 31(4): 844-855.
SHI Hui-Min, WU Yang, SU Fei-Yan, LI Dan-Dan, HOU Jian-Hua. Research Advances on Drought Stress Related Genes and Transcription Factor in Sunflower (Helianthus annuus). 农业生物技术学报, 2023, 31(4): 844-855.
[1] 白杨. 2020. 向日葵全基因组 WRKY 转录因子的鉴定及表达分析[D]. 硕士学位论文, 内蒙古农业大学, 导师:景岚, pp. 19-23. (Bai Y. 2020. Genome-wide identification and expression analysis of the WRKY gene family in sunflower[D]. Thesis for M. S., Inner Mongolia Agricul-tural University, Supervisor: Jing L, pp. 19-23. ) [2] 梁春波, 黄绪堂, 李岑, 等. 2015. 向日葵逆境应答转录因子DREB 的克隆与表达分析[J]. 宁夏农林科技, 56(07): 31-34. (Liang C B, Huang X T, Li C, et al. 2015. Clon-ing and expressing analysis of a DREB transcription fac-tor in sunflower[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 56(07): 31-34) [3] 林展图, 李涛, 王彩云, 等. 2014. 甘蔗抗旱基因研究进展[J]. 湖北农业科学, 53(2): 249-254. (Lin Z T, Li T, Wang C Y, et al. 2014. Researches of drought-resistance related genes in sugarcane[J]. Hubei Agricultural Sciences, 53(2): 249-254) [4] 刘慧洁, 徐恒, 邱文怡, 等. 2019. bZIP 转录因子在植物生长发育及非生物逆境响应的作用[J]. 浙江农业学报, 31(7): 1205-1214. (Liu H J, Xu H, Qiu W Y, et al. 2019. Roles of bZIP transcription factors in plant growth and development and abiotic stress response[J]. Acta Agri-culturae Zhejiangensis, 31(7): 1205-1214) [5] 孙瑞芬, 张艳芳, 聂利珍, 等. 2021a. 向日葵 HaDREBA5 基因克隆及其对生物和非生物胁迫的响应[J]. 农业生物技术学报, 29(05): 900-914. (Sun R F, Zhang Y F, Nie L Z, et al. 2021a. Gene cloning of HaDREBA5 from sunflow-er (Helianthus annuus) and its responses to biotic and abiotic stress[J]. Journal of Agricultural Biotechnology, 29(05): 900-914. ) [6] 孙瑞芬, 张艳芳, 牛素清, 等. 2021b. 向日葵 HaACO1 基因的表达分析及功能验证[J]. 生物技术通报, 37(9): 114-124. (Sun R F, Zhang Y F, Niu S Q, et al. 2021b. Expres-sion analysis and functional verification of the HaACO1 gene in sunflower[J]. Biotechnology Bulletin, 37(9): 114-124) [7] 王雅茹. 2021. 向日葵苗期干旱胁迫响应及其差异表达基因分析[D]. 硕士学位论文, 内蒙古农业大学, 导师: 侯建华, pp. 31-37. (Wang Y R. 2021. Responses to drought stress and analysis of differentially expressed genes in sunflower seedlings[D]. Thesis for M. S., Inner Mongo-lia Agricultural University, Supervisor: Hou J H, pp. 31-37. ) [8] 温蕊. 2017. 向日葵种子萌发期干旱胁迫相关基因的 cD-NA-AFLP 差异表达分析[D]. 硕士学位论文, 内蒙古农业大学, 导师: 侯建华, pp. 40-44. (Wen R. 2017. Analy-sis of differential expression genes by cDNA-AFLP ap-proach during drought stress in sunflower seed germina-tion[D]. Thesis for M. S, Inner Mongolia Agricultural University, Supervisor: Hou J H, pp. 40-44. ) [9] 项玉婷, 王景, 曾俊岚等. 2020. 向日葵 WRKY 转录因子家族鉴定与生物信息学分析[J]. 分子植物育种, 18(14): 4572-4586. (Xiang Y T, Wang J, Zeng J Let al. 2020. Genome-wide Identification and bioinformatics analysis of WRKY transcription factor family in sunflower (Heli-anthus annuus)[J]. Molecular Plant Breeding, 18(14): 4572-4586) [10] 易乐飞, 周科峰, 王萍. 2013. 向日葵 BADH 基因表达的定量PCR 检测方法建立与初步应用[J]. 作物杂志, (5): 70-74. (Yi L F, Zhou K F, Wang P. 2013. Development and application of a real-time RT-PCR approach for quantifi-cation of BADH gene expression in Helianthus annuus[J]. Crops, (5): 70-74. ) [11] 赵雅杰, 赵轩微, 田振东, 等. 2021. 油用向日葵脱落酸代谢及差异基因表达对水分亏缺的响应[J]. 华北农学报, 36(6): 54-62. (Zhao Y J, Zhao X W, Tian Z D, et al. 2021. Abscisic acid metabolism and differential gene ex-pression response to water deficit in the oil sunflower[J]. Acta Agricultural Boreali-Sinica, 36(6): 54-62) [12] 张萍, 王斐, 孙辉, 等. 2011. 过量表达棉花 GhACO2 基因增强拟南芥抗逆性研究[J]. 中国农学通报, 27(12): 255-260. (Zhang P, Wang F, Sun H, et al. 2011. Overexpres-sion of a cotton GhACO2 gene enhancing the stress toler-ance of Ababidopsis thaliana[J] Chinese Agricultural Sci-ence Bulletin, 27(12): 255-260. ) [13] 甄子龙. 2021. 向日葵苗期抗旱性鉴定及抗旱相关性状的全基因组关联分析[D]. 硕士学位论文, 内蒙古农业大学, 导师: 侯建华, pp. 40-41. (Zhen Z L. 2021. Drought re-sistance evaluation and genome-wide association analy-sis of drought resistance-related traits in sunflower seed-lings[D]. Thesis for M. S, Inner Mongolia Agricultural University, Supervisor: Hou J H, pp. 40-41. ) [14] 朱婷婷, 王彦霞, 裴丽丽, 等. 2017. 植物蛋白激酶与作物非生物胁迫抗性的研究[J]. 植物遗传资源学报, 18(4): 763-770. (Zhu T T, Wang Y X, Pei L L, et al. 2017. Re-search progress of plant protein kinase and abiotic stress resistance[J]. Journal of Plant Genetic Resources, 2017, 18(4): 763-770. ) [15] Ahmad H M, Rahman M U, Ahmar S, et al. 2021. Compara-tive genomic analysis of MYB transcription factors for cuticular wax biosynthesis and drought stress tolerance in Helianthus annuus L[J]. Saudi Journal of Biological Sciences, 28(10): 5693-5703. [16] Badouin H, Jérôme Gouzy J, Christopher J, et al., 2017. The sunflower genome provides insights into oil metabo-lism, flowering and Asterid evolution[J]. Nature, 546: 148-152 [17] Baloglu M C, Eldem V, Hajyzadeh M, et al. 2014. Genome-wide analysis of the bZIP transcription factors in cumber[J]. PLoS One, 9(4): e96014 [18] Bing J, Xiao E S, Li C L, et al. 2019. Genome-wide identifica-tion and expression analysis of growth-regulating factor family genes in sunflower (Helianthus annuus L. )[J]. Preprints, 2019120151. [19] Cabello J V, Chan R L. 2012. The homologous homeodomain-leucine zipper transcription factors HaHB1 and AtHB13 confer tolerance to drought and salinity stresses via the induction of proteins that stabilize membranes[J]. Plant Biotechnology Journal, 10(7): 815-825. [20] Cabello J V, Giacomelli J I,Gómez M C. 2017. The sunflower transcription factor HaHB11 confers tolerance to water deficit and salinity to transgenic Arabidopsis and alfalfa plants[J]. Journal of Biotechnology, 257: 35-46. [21] Chen J, Nolan T M, Ye H, et al. 2017. Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are in-volved in brassinosteroid-regulated plant growth and drought responses[J]. Plant Cell, 29: 1425-1439. E Z G, Chen C, Yang J Y, et al. 2019. Genome-wide analysis of fatty acid desaturase genes in rice(Oryza sativa L. ) [J], Scientific Reports, 9(1): 19445. [22] Escalante M, Vigliocco A, Moschen S, et al. 2020. Transcrip-tomic analysis reveals a differential gene expression pro-file between two sunflower inbred lines with different ability to tolerate water stress[J]. Plant Molecular Biolo-gy Reporter, 38: 222-237. [23] Fitzgerald T L, Waters D L, Henry R J. 2009. Betaine alde-hyde dehydrogen-ase in plants[J]. Plant Biology, 11(2): 119-130. [24] Giordani T, Buti M, Natali L, et al. 2011. An analysis of se-quence variability in eight genes putatively involved in drought response in sunfower (Helianthus annuus L. )[J]. Theoretical and Applied Genetics, 122(6): 1039-1049. [25] González F G, Capella M, Ribichich K F, et al. 2019. Field-grown transgenic wheat expressing the sunflower gene HaHB4 significantly outyields the wild type[J]. Journal of Experimental Botany, 70(5): 1669-1681. [26] Gutterson N, Reuber T L. 2004. Regulation of disease resis-tance pathways by AP2 /ERF transcription factors[J]. Current Opinion in Plant Biology, 7(4): 465-471. [27] Islam M, Chowdhury A K, Rahman M, et al. 2015. Compara-tive investigation of glutathione S-transferase (GST) in different crops and purification of high active GSTs from Onion (Allium cepa L. )[J]. Journal of Plant Scienc-es, 3(3): 162-170. [28] Jofuku K D, den Boer B G, Montagu M V. 1994. Control of Arabidopsis flower and seed development by the homeot-ic gene APETALA2[J]. The Plant Cell, 6(9): 1211-1225. [29] Khaksefidi R E, Mirlohi S, Khalaji F, et al. 2015. Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helian-thus annuus[J]. Froniters in Plant Science, 6: 741. [30] Kong L Y, Cheng J K, Zhu Y J, et al. 2015. Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases[J]. Nature Communications, 6;8630. [31] Ledent V, Vervoort M. 2001. The basic helix-loop-helix pro-tein family: Comparative genomics and phylogenetic analysis[J]. Genome Research, 11(5): 754-770. [32] Li D, Liu P, Yu J, etal. 2017. Genome-wide analysis of WRKY gene family in the sesame genome and identifi-cation of the WRKY genes involved in responses to abi-otic stresses[J]. BMC Plant Biology, 17(1): 1-19. [33] Li J J, Islam F, Huang Q, et al. 2020a. Genome-wide charac-terization of WRKY gene family in Helianthus annuus L. and their expression profiles under biotic and abiotic stresses[J]. PLoS One, 15: e0241965. [34] Li J J, Li X, Han Pet al. 2021a. Genome-wide investigation of bHLH genes and expression analysis under different biotic and abiotic stresses in Helianthus annuus L[J]. In-ternational Journal of Biological Macromolecules, 189: 72-83. [35] Li J J, Liu A, Ullah N, et al. 2021b. Genome-wide investiga-tion and expression analysis of membrane-bound fatty acid desaturase genes under different biotic and abiotic stresses in sunflower (Helianthus annuus L. )[J]. Interna-tional Journal of Biological Macromolecules, 175: 188-198. [36] Li J J, Liu H, Yang C, et al. 2020b. Genomewide identifica-tion of MYB genes and expression analysis under differ-ent biotic and abiotic stresses in Helianthus annuus L[J]. Industrial Crops and Products, 143: 111924. [37] Li P, Wen J, Chen P, et al. 2020c. Myb superfamily in Brassica napus: Evidence for hormone-mediated expression profi-files, large expansion, and functions in root hair develop-ment[J]. Biomolecules, 10(6): 875. [38] Li W H, Zeng Y L, Yin F L, et al. 2021c. Genome wide iden-tifcation and comprehensive analysis of the NAC tran-scription factor family in sunfower during salt and drought stress[J]. Scientific Report, 11(1): 1-12. [39] Li X, Jin F, Jin L, et al. 2015. Characterization and compara-tive profiling of the small RNA transcriptomes in two phases of flowering in Cymbidium ensifolium[J]. BMC Genomics, 16(1): 1-17. [40] Li Z, Wang Y, Chen Y, et al. 2009. Genetic diversity and dif-ferentiation of Sclerotinia sclerotiorum populations in sunflower[J]. Phytoparasitica, 37(1): 77-85. [41] Liu A K, Liu C L, Lei H Y, et al. 2020. Phylogenetic analysis and transcriptional profiling of WRKY genes in sun-flower (Helianthus annuus L. ): Genetic diversity and their responses to different biotic and abiotic stresses[J]. Industrial Crops and Products, 148: 112268. [42] Liu X, Chu Z. 2015. Genome-wide evolutionary characteriza-tion and analysis of bZIP transcription factors and their expression profiles in response to multiple abiotic stress-es in Brachypodium distachyon[J]. BMC Genomics, 16(1): 1-15. [43] Liu X, Vance Baird W M. 2004. Identification of a novel gene, HAABRC5, from Helianthus annuus (Asteraceae) that is upregulated in response to drought, salinity, and abscisic acid[J]. American Journal of Botany, 91(2):184-191. [44] Liang C B, Wang W J, Ma J, et al. 2020. Identification of dif-ferentially expressed microRNAs of sunflower seed-lings under drought stress[J]. Agronomy Journal, 112(4): 2472-2484. [45] Liang C B, Wang W J, Wang J, et al. 2017. Identifcation of diferentially expressed genes in sunfower (Helianthus annuus L. ) leaves and roots under drought stress by RNA sequencing[J]. Botanical Studies, 58(1): 42. [46] Lu K, Liang S, Wu Z, et al. 2016. Overexpression of an Arabi-dopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance[J]. Journal of Experimental Botany, 67(17): 5009-5027. [47] Ma L G, Zhang Y H, Meng Q L, et al. 2018. Molecular clon-ing, identification of GSTs family in sunflower and their regulatory roles in biotic and abiotic stress[J]. World Journal of Microbiology and Biotechnology, 34(8): 1-12. [48] Manavella P A, Arce A L, Dezar C A, et al. 2006. Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor[J]. The Plant Journal, 48(1): 125-137. [49] Marimo P, Hayeshi R, Mukanganyama S, et al. 2016. Inactiva-tion of glutathione transferase ε2 by Epiphyllocoumarin[J]. Biochemistry Research International,(6): 1-8. [50] Mayer Z, Duc N H, Posta K. 2017. Gene expression of gluta-thione-Stransferase in sunflower (Helianthus annuus L. ) inoculated with arbuscular mycorrhizal fungi under tem-perature stresses[J]. Columella-Journal of Agricultural and Environmental Sciences, 4(1, Suppl. ): 69-72. [51] Mianlengeh Z E, Najafabadi M S, Saidi A, et al. 2018. Moni-toring response of a few bZip transcription factors in re-sponse to osmotic stress in sunflower[J]. Iranian Journal Biotechnology, 2018, 16(2): e1422. [52] Mondal S K, Roy S. 2018. Genome-wide sequential, evolu-tionary, organizational and expression analyses of phen-ylpropanoid biosynthesis associated MYB domain tran-scription factors in Arabidopsis[J]. Journal of Biomolecu-lar Structure and Dynamics, 36(6): 1577-1601. [53] Moschen S, Luoni S B, Paniego N B. 2014. Identifcation of candidate genes associated with leaf senescence in culti-vated sunfower (Helianthus annuus L. )[J]. PLoS One, 9(8): e104379. [54] Moschen S, Rienzo J A D, Higgins J, et al. 2017. Integration of transcriptomic and metabolic data reveals hub tran-scription factors involved in drought stress response in sunflower (Helianthus annuus L. )[J]. Plant Molecular Bi-olology, 94(4): 549-564. [55] Najaf S, Sorkheh K, Nasernakhaei F. 2018. Characterization of the APETALA2/ethylene-responsive factor (AP2/ ERF) transcription factor family in sunflower[J]. Scien-tific Reports, 8(1): 1-16. [56] Nakano T, Suzuki K, Fujimura T, et al. 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 140(2), 411-432. [57] Neupane S, Andersen E J, Neupane Aet al. 2018. Genome-wide identification of NBS-encoding resistance genes in sunflower (Helianthus annuus L. )[J]. Genes, 9(8): 384. [58] Neupane S, Schweitzer S E, Neupane A, et al. 2019. Identifi-cation and characterization of mitogen-activated protein kinase (MAPK) genes in sunflower (Helianthus annuus L. )[J]. Plants, 2019, 8(2): 28. [59] Ouvrard O, Cellier F, K Ferrare K, et al. 1996. Identification and expression of water stress-and abscisic acid-regulat-ed genes in a drought-tolerant sunflower genotype[J]. Plant Molecular Biology, 31(4): 819-829. [60] Pizzio, G A, Rodriguez L, Antoni Ret al. 2013. The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/ PROTEIN PHOSPHATASE 2CA interaction for abscis-ic acid signaling and plant drought resistance[J]. Plant Physiology, 163(1), 441-455. [61] Pradeep K A, Kapil G, Sergiy L, et al. 2017. Dehydration re-sponsive element binding transcription factors and their applications for the engineering of stress tolerance[J]. Journal of Experimental Botany, 68(9): 2135-2148. [62] Raineri J, Ribichich K F, Chan R L. 2015. The sunflower tran-scription factor HaWRKY76 confers drought and flood tolerance to Arabidopsis thaliana plants without yield penalty[J]. Plant Cell Report, 34(12): 2065-2080. [63] Ribichich K F, Chiozza M, Ávalos-Britez S, et al. 2020. Suc-cessful field performance in warm and dry environ-ments of soybean expressing the sunflower transcription factor HB4[J]. Journal of Experimental Botany, 71(10): 3142-3156. [64] Rodriguez-Uribe L, O'Connell M A. 2006. A root-specific bZIP transcription factor is responsive to water deficit stress in tepary bean (Phaseolus acutifolius) and com-mon bean (P. vulgaris)[J]. Journal of Experimental Bota-ny, 57(6): 1391-1398. [65] Santiago, J, Dupeux, F, Round, A, et al. 2009. The abscisic ac-id receptor PYR1 in complex with abscisic acid[J]. Na-ture, 462(7273): 665-668. [66] Sebastián M, Julio A. D R, Janet H, et al. 2017. Integration of transcriptomic and metabolic data reveals hub transcrip-tion factors involved in drought stress response in sun-flower (Helianthus annuus L. )[J]. Plant Molecular Bio-lology, 94(4): 549-564. [67] Singh K B, Foley R C, Oate-Sánchez L. 2002. Transcription factors in plant defense and stress responses[J]. Current Opinion in Plant Biology, 5(5): 430-436. [68] Sunkar R, Li Y F, Jagadeeswaran G. 2012. Functions of mi-croRNAs in plant stress responses[J]. Trends in Plant Science, 17(4): 196-203. [69] Surendran U, Kumar V, Ramasubramoniam S, et al. 2017. De-velopment of drought indices for semi-arid region using drought indices calculator (DrinC) -A case study from Madurai District, a semi-arid region in India[J]. Water Resources Management, 31: 3593-3605. [70] Trindade I, Capitão C, Dalmay Tet al. 2010. miR398 and miR408 are up-regulated in response to water defificit in Medicago truncatula[J]. Planta, 231(3): 705-716. [71] Wang Z H, Cheng K, Wan L Y, et al. 2015. Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes[J]. BMC Ge-nomics, 16(1): 1-15. [72] Wu Y, Shi H M, Yu H Fet al. 2022a. Combined GWAS and transcriptome analyses provide new insights into the re-sponse mechanisms of sunflower against drought stress[J]. Froniters in Plant Science, 13: 847435. [73] Wu Y, Wang Y R, Shi H M, et al. 2022b. Time-course tran-scriptome and WGCNA analysis revealed the drought response mechanism of two sunflower inbred lines[J]. PLoS One, 17(4): e0265447. [74] Yuce M, Taspinar M S, Aydin M, et al. 2019. Response of NAC transcription factor genes against chromium stress in sunfower (Helianthus annuus L. )[J]. Plant Cell, Tis-sue and Organ Culture, 136(3): 479-487. [75] Zenda T, Liu S, Wang X, et al. 2019. Key maize drought-re-sponsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines[J]. International Journal of Molecular Sci-ences, 20(6): 1268. [76] Zhuang J, Chen J M, Yao Q H, et al. 2011. Discovery and ex-pression profile analysis of AP2/ERF family genes from Triticum aestivum[J]. Molecular Biology Reports, 38(2): 745-753. [77] Zhuang J, Deng D X, Yao Q H, et al. 2010. Discovery, phylog-eny and expression patterns of AP2-like genes in maize[J]. Plant Growth Regulation, 62(1): 51-58.