Identification of SPL Gene Family in Pinus massoniana and Their Expression in Response to Low Phosphorus Stress
WANG Chun-Yu1,2, FAN Fu-Hua1,2,*
1 Institute for Forest Resources and Environment of Guizhou/Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guizhou University, Guiyang 550025, China; 2 College of Forestry, Guizhou University, Guiyang 550025, China
Abstract:SPL (SQUAMOSA promoter binding protein (SBP)-like) is a plant specific transcription factor, and plays an important role in plant growth, development and metabolism. In this study, SPL family members were screened from the transcriptome data of Pinus massoniana obtained by the previous research. Through bioinformatics methods, the protein physical and chemical properties, subcellular localization prediction, conserved protein motif analysis, and phylogenetic tree analysis of PmSPL gene family were carried out. The results showed that 11 PmSPL family members were identified. All the family members were predicted to locate in the nucleus. The encoded proteins were composed of 190~1 147 amino acids, and the relative molecular mass were 21.6~127.1 kD. All the sequences contained motif1~3, which were conservative sequences of SBP domain. All the 11 PmSPLs contained 2 C2HC zinc finger structures and 1 nuclear localization signal (NLS). The response of PmSPL gene family to low phosphorus stress was detected by qRT-PCR. The results showed that the expression of PmSPL3 and PmSPL8 did not change significantly in the aboveground and underground parts of P. massoniana seedlings treated with low phosphorus at different times, which indicated that they did not respond to low phosphorus stress; PmSPL4 and PmSPL6 expression were significantly up-regulated in both aboveground and underground parts after 12 d of low phosphorus treatment, which might play a role in response to low phosphorus stress. This study provides a reference for further revealing the biological function of PmSPL gene family in response to low phosphorus stress.
王春昱, 范付华. 马尾松SPL基因家族鉴定及其响应低磷胁迫的表达分析[J]. 农业生物技术学报, 2023, 31(3): 509-517.
WANG Chun-Yu, FAN Fu-Hua. Identification of SPL Gene Family in Pinus massoniana and Their Expression in Response to Low Phosphorus Stress. 农业生物技术学报, 2023, 31(3): 509-517.
[1] 丁贵杰, 吴协保, 齐新民, 等. 2002. 马尾松纸浆材林经营模型系统及优化栽培模式研究[J]. 林业科学, 38(05): 7-13. (Ding G J, Wu X B, Wang P C, et al.2002. A studyon management model system and optimum cultivation patterns of Pinus massoniana for pulpwood stand[J]. Scientia Silvae Sincae, 38(5): 7-13.) [2] 李全超, 刘洋, 肖瑶宇, 等. 2019. 基于转录组的'黄花2号'水仙ARF基因家族分析[J]. 应用与环境生物学报, 25(03): 687-694. (Li Q C, Liu Y, Xiao Y Y, et al.2019. Trandcriptome-based analysis of the ARF gene family of Narcissus tacetta 'Huanghua 2'[J]. Chinese Journal of Applied and Environmental Biology, 25(03): 687-694. [3] 刘闯. 2017. 18个白桦SPLs基因的鉴定及BpSPL8基因的功能分析[D]. 硕士学位论文, 东北林业大学, 导师: 刘雪梅, pp9-10. (Liu C.2017. Identification of 18 SPL gene family members and functional analysis of BpSPL8 in Betula platyphylla Suk[D]. Thesis for M.S., Northeast Forestry University, Supervisor: Liu X M, pp. 9-10.) [4] 雷凯健, 任晶, 朱园园, 等. 2016. 拟南芥SPL1基因参与调节低磷条件下的根际酸化反应[J]. 植物学报, 51(02): 184-193. (Lei K J, Ren J, Zhu Y Y, et al.2016. SPL1 is involved in the regulation of rhizosphere acidification reaction under low phosphate condition in Arabidopsis [J]. Chinese Bulletin of Botany, 51(02): 184-193.) [5] 李慧平, 王庆竹, 汤纬玮, 等. 2018. 马尾松PmMYB169基因亚细胞定位及其超表达烟草低磷抗性分析[J]. 华中农业大学学报, 37(04): 58-64. (Li H P, Wang Q Z, Tang W W, et al.2018. Subcellular localization and low phosphorus tolerance analyses of masson pine (Pinus massoniana) PmMYB169 gene in over-expression transgenic tobacco[J]. Journal of Huazhong Agricultural University,37(04): 58-64.) [6] 林雅明. 2014. miR156参与低磷诱导的拟南芥根际酸化反应[D]. 硕士学位论文, 河南大学, 导师: 安国勇, pp. 1-58. (Lin Y M.2014. miR156-mediaed responses to phosphorus deficiency in Arabidopsis rhizosphere acidification[D]. Thesis for M.S., Henan University, Supervisor: An G Y, pp. 1-58.) [7] 秦晓佳, 丁贵杰. 2012, 低磷胁迫对不同种源马尾松幼苗氮钾吸收与利用的影响[J]. 中南林业科技大学学报, 32(04):32-36. (Qin X J, Ding G J.2012. Effects of low phosphorus stress on absorption and utilization of nitrogen and potassium in different provenances Pinus massoniana seedlings[J]. Journal of Central South University of Forestry &Technology, 32(04): 32-36) [8] 任晶. 2015. 低磷胁迫下miR156及其靶基因SPL9调控miR399f的分子机制[D]. 硕士学位论文, 河南大学, 导师: 宋纯鹏, pp. 53. (Ren J.2015. The molecular mechanism of miR156 and SPL9 rengulate miR399f under low phosphorus stress[D]. Thesis for M.S., Henan University, Supervisor: Song C P, pp. 53) [9] 荣誉磊, 周志林, 赵冬兰, 等. 2021. 甘薯、番茄、拟南芥中SPL转录因子的生物信息学分析[J]. 江苏农业科学, 49(20): 74-83. (Rong Y L, Zhou Z L, Zhao D L, et al.2021. Bioinformatics analysis of SPL transcription factors in Dioscorea esculenta, Solanum lycopersicum and Arabidopsis thaliana[J]. Jiangsu Journal of Agricultural Sciences. 49(20): 74-83.) [10] 阮慧. 2019. Gma-miR156和Gma-miR166基因调控大豆磷代谢及磷平衡的功能研究[D]. 硕士学位论文, 南京农业大学, 导师: 杨守萍, pp. 67. (Ruan H.2019. Functional study on Gma-miR156 and Gma-miR166 genes in regulating phosphorus metabolism and phosphorus balance in soybean (Glycine Max (L.) merr.)[D]. Thesis for M.S., Nanjing Agricultural University, Supervisor: Yang S P, pp. 67) [11] 王庆竹. 2018. 马尾松磷转运相关转录因子PmWRKY164的克隆及功能分析[D]. 硕士学位论文, 贵州大学, 导师: 文晓鹏, pp. 30-32. (Wang Q Z.2018. Cloning andfunction analysis of phosphorus transport-related tran-scription factor PmWRKY164 in Pinus massoniana[D].Thesis for M.S., Guizhou University, Supervisor: Wen X P, pp. 30-32.) [12] 王庆竹, 尚先文, 汤纬玮, 等. 2019. 马尾松PmWRKY164基因的克隆及耐低磷功能分析[J]. 农业生物技术学报, 27(6): 1016-1024. (Wang Q Z, Shang X W, Tang W W, et al.2019. Cloning and low phosphorus tolerance functionanalysis of PmWRKY164 from Pinus massoniana[J]. Journal of Agricultural Biotechnology, 27(6): 1016-1024.) [13] 徐向华, 丁贵杰. 2006. 马尾松适应低磷胁迫的生理生化响应[J]. 林业科学, 42(09): 24-28. (Xu X H, Ding G J.2006. Physiological and biochemical responses of Pinus massoniana to low phosphorus stress[J]. Scientia Silvae Sincae, 42(9): 24-28.) [14] 杨紫贻, 米福贵, 唐芳, 等. 2021. 山羊草SPL转录因子基因家族分析[J]. 中国草地学报, 43(10): 9-17. (Yang Z Y, Mi F G, Tang F, et al.2021. Analysis of SPL transcription factor gene family in Aegilops tauschii[J]. Chinese Journal of Grassland, 43(10): 9-17.) [15] 钟雅珠, 马伯军, 范海阔, 等. 2021. 椰子SPL基因家族的生物信息学及其表达分析[J]. 中国南方果树, 50(01): 38-45. (Zhong Y Z, Ma B J, Fan H K, et al.2021. Bioinformatics and expression analysis of SPL gene family in Cocos nucifera Linnaeus[J]. South China Fruits, 50(01): 38-45) [16] Birkenbihl R P, Jach G, Saedler H, et al.2005. Functional dissection of the plant-specific SBP-domain: Overlap of the DNA-binding and nuclear localization domains[J]. Journal of Molecular Biology, 352(3): 585-596. [17] Cardon G, Höhmann S, Klein J, et al.1999. Molecular characterisation of the Arabidopsis SBP-box genes[J]. Gene, 237(1): 91-104. [18] Fan F, Wang Q Z, Wen X P, et al.2020. Transcriptome-wide identification and expression profiling of Pinus massoniana MYB transcription factors responding to phosphorus deficiency[J]. Journal of Forestry Research, 31(3): 909-919. [19] Gou J Y, Felippes F F, Liu C J, et al.2011. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor[J]. The Plant cell, 23(4): 1512-1522 [20] Klein J, Saedler H, Huijser P.1996. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA[J]. Molecular & General Genetics, 250(1): 7-16. [21] Lei K J, Lin Y M, Ren J, et al.2016. Modulation of the phosphate-deficient responses by microRNA156 and its targeted squamosa promoter binding protein-like 3 in Arabidopsis[J]. Plant & Cell Physiology, 57(1): 192-203. [22] Raghothama K G.1999. Phosphate acquisition[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 50: 665-693. [23] Schwab R, Palatnik J F, Riester M, et al.2015. Specific effects of microRNAs on the plant transcriptome[J]. Developmental Cell, 8(4): 517-527. [24] Stone J M, Liang X W, Nekl E R, et al.2005. Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1[J]. Plant, 41: 744-754. [25] Wang S K, Wu K, Yuan Q B, et al.2012. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 44(8): 950-954. [26] Wang Y, Hu Z L, Yang Y X, et al.2009. Function annotation of an SBP-box gene in Arabidopsis based on analysis of co-expression networks and promoters[J]. International Journal of Molecular Sciences, 10(1): 116-132. [27] Wu G, Poethig R S.2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[J]. Development, 133(18): 3539-3547. [28] Wu G, Park M Y, Conway S R, et al.2009. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 138(4): 750-759. [29] Yamasaki H, Hayashi M, Fukazawa M, et al.2009. SQUAMOSA promoter binding protein like 7 is a central regulator for copper homeostasis in Arabidopsis[J]. Plant Cell 21: 347-361. [30] Yamasaki K, Kigawa T, Inoue M, et al.2004. A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors[J]. Journal of Molecular Biology, 337(1): 49-63.