Overexpression of Nicotiana tabacum High-affinity Potassium Ion Transporter Protein Gene(HAK1) Improves the Salt-tolerance in Tobacco(N. tabacum) Plants
1, 1, 1, 2
1. 2. Guizhou Key Lab of Agricultural Bioengineering,Guizhou University
Abstract:The high-affinity potassium ion transporter protein (HAK) plays an important role in improving the salt-tolerance in plants. In this study, we investigated the effect of salt stress on germination rate (Gr), germination potential (Gp), and germination index (Gi) in seeds of NtHAK1-overexpression plants and on the content of chlorophyll (Chl) and malondialdehyde (MDA), the activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) in NtHAK1-overexpressing tobacco plantlets (4 to 5 leaf stage). The results showed there was no siginificant effect on Gr, Gp, and Gi in the seeds of overexpressing and wild-type tobaccos under 50 mmol/L NaCl, but siginificant difference appeared between overexpressing plants and wild-type plants with 81.6% for Gr, 85.0% for Gp, and 42.6% for Gi in transgenic tobaccos under 100 mmol/L NaCl and 63.9% for Gr, 78.8% for Gp, and 20.2% for Gi in transgenic tobaccos under 150 mmol/L NaCl, which both were significantly higher than that in wild-type tobaccos (P<0.05). The Chl content decreased from 2.25 mg/g (FW) before salt treatment to 1.31 mg/g(FW) at 5 d after salt treatment in wild-type plantlets and the decreasing amplitude of Chl content was 41.8%, while the average value of decreasing amplitude was 36.5% in transgenic tobaccos, which was significantly lower than the former. At 5 d after salt treatment, the MDA content was 105 nmol/g(FW) in non-transgenic plants, while it was 96.52 nmol/g(FW) in overexpressing plants. Meanwhile, the activities of antioxidant enzymes (AOEs), including SOD and CAT, were significantly up-regulated in NtHAK1-overexpression tobaccos with the increasing amplitude of 38.8% for SOD activity and 58.1% for CAT activity, while it was 34.2% for SOD and 54.6% for CAT in wild-type ones. The results from quantitative Real-time PCR for Na+/K+ absorption-related genes at 3 d after salt treatment in overexpressing and wild-type tobacco showed the relative expression levels of HAK1, potassium outward rectifier channel protein (TORK1), and vacuolar Na+/H+ antiporter protein (NHX1) were significantly up-regulated in NtHAK1- overexpression tobacco plants compared with wild-type ones. They were 3.85 folds for HAK1, 1.79 folds for TORK1, and 1.69 folds for NHX1 higher than those in wild-type tobaccos. In addition, the ratio of Na to K in different plant tissues demonstrated that it was 0.110 in root tissue and 0.106 in leaf tissue of transgenic plants respectively, while it was 0.147 for root tissue and 0.135 for leaf tissue in wild-type plants. The ratio of Na to K of different tissues in transgenic tobaccos was significantly lower (P<0.05) than that in wild-type ones. This study provids the plant materials for breeding the salt-tolerant tobaccos and further studying the mechanism of HAK1-mediated salt-tolerance in transgenic plants.
[1]胡生荣, 高永, 武飞, 等.盐胁迫对两种无芒雀麦种子萌发的影响[J].植物生态学报, 2007, 31(3):513-520[2]李聪, 郭梦阳, 韩烈保.胁迫对烟草种子萌发及幼苗生理特性的影响[J].中国农学通报, 2013, 29(3):103-107[3]李倩, 刘景辉, 武俊英, 等.盐胁迫对燕麦质膜透性及+、+吸收的影响[J].华北农学报, 2009, 24(6):88-92[4]李彦, 张英鹏, 孙明, 等.盐分胁迫对植物的影响及植物耐盐机理研究进展[J].中国农学通报, 2008, 24(1):258-265[5]刘爱荣, 赵可夫.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用[J].植物生理与分子生物学学报, 2005, 31(4):389-395[6]孟繁昊, 王聪, 徐寿军.盐胁迫对植物的影响及植物耐盐机理研究进展[J].内蒙古民族大学学报自然科学版, 2014, 29(3):315-318[7]宁正祥.食品分析手册[M]. 北京: 中国轻工业出版社, 1998 (Ning Z X, Food Analysis Handbook [M]. Beijing: China Light Industry Press, 1998)[8]乔旭, 黄爱军, 褚贵新.植物对盐分胁迫的响应及其耐盐机理研究进展[J].新疆农业科学, 2011, 48(11):2089-2094[9]谭颖, 秦利军, 赵丹, 等.共转化法获得 基因高表达烟草提高植株钾吸收能力[J].植物生理学报, 2013, 49(7):689-699[10]王秀玲.盐对夏至草种子萌发以及盐胁迫解除后种子萌发能力恢复的影响[J].植物生理学通讯, 2008, 44(3):436-440[11]王瑞新主编.烟草化学[M]. 北京: 中国农业出版社, 2009 (Wang R X. Tobacco Chemistry [M]. Beijing: China Agriculture Press, 2009)[12]吴运荣, 林宏伟, 莫肖蓉.植物抗盐分子机制及作物遗传改良耐盐性的研究进展[J].植物生理学报, 2014, 50(11):1621-1629[13]伍林涛, 杜才富, 邵明波.植物盐胁迫耐受性研究进展.[J].吉林农业, 2010, 9:51-52[14]徐恒刚主编.中国盐生植被及盐渍化生态治理[M]. 北京: 中国农业科学技术出版社, 2004 (Xu H G. Chinese salt vegetation and ecological management salinization [M]. Beijing: China Agricultural Science and Technology Press, 2004)[15]杨少辉, 季静, 王罡.盐胁迫对植物的影响及植物的抗盐机理[J].世界科技研究与发展, 2006, 28(4):70-76[16]杨艳兵, 姜艳丽, 尹晓斐, 等.胁迫对棉花幼苗生理特性的影响[J].山西农业大学学报自然科学版, 2013, 33(4):290-294[17]张洁明, 孙景宽, 刘宝玉, 等.盐胁迫对荆条、白蜡、沙枣种子萌发的影响[J].植物研究, 2006, 26(5):595-599[18]张勇, 韩多红, 晋玲, 等.不同盐碱胁迫对红芪种子萌发和幼苗生理特性的影响[J].中国中药杂志, 2012, 37(20):3036-3040[19]赵可夫.植物对盐胁迫的适应[J].生物学通报, 2002, 37(6):7-10[20]邹琦主编.植物生理生化实验指导[M]. 北京: 中国农业出版社, 1995 (Zou Q. Plant Physiology and biochemistry experimental guidance [M]. Beijing: China Agriculture Press, 1995)[21]Blumwald E.Sodium transport and salt tolerance in plants [J].[J].Current opinion in cell biology, 2000, 12(4):431-434[22]Cheeseman J M.Mechanisms of salinity tolerance in plants[J].Plant Physiology, 1988, 87(3):547-550[23]Fukuda A, Nakamura A, Tagiri A, et al.Function,intracellular localization and the importance in salt tolerance of a vacuolar Na+H+ antiporter from rice[J].Plant Cell Physiology, 2004, 45(2):149-159[24]Giri B, Kapoor R, Mukerji K G.Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza,Glomus fasciculatum may be partly related to elevated KNa ratios in root and shoot tissues[J].Microbial Ecology, 2007, 54(4):753-760[25]Horie T, Hauser F, Schroeder J I.HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants[J].Trends in Plant Science, 2009, 14(12):660-668[26]Horie T, Sugawara M, Okada T, Taira K, et al.Rice sodium-insensitive potassium transporter,OsHAK5,confers increased salt tolerance in tobacco BY2 cells[J].Journal of Bioscience and Bioengineering, 2001, 111(3):346-356[27]Horie T, Sugawara M, Okunou K, et al.Functions of HKT transporters in sodium transport in roots and in protecting leaves from salinity stress[J].Plant Biotechnology, 2008, 25(3):233-239[28]Jennings B D H.The effects of sodium chloride on higher plants[J].Biological Reviews, 1976, 51(4):453-486[29]Lu S Y, Jing Y X, Shen S H, et al.Antiporter gene from Hordum brevisubulatum (Trin) link and its overexpression in transgenic tobaccos[J].Journal of Integrative Plant Biology, 2005, 47(3):343-349[30]Rhoades J D, Loveday J.Salinity in irrigated agriculture [M]. In: Steward B.A., Nielsen D.R.(eds). American Society of Civil Engineers, Irrigation of Agricultural Crops (Monograph 30). American Society of Agronomists. 1990[31]Shabala S, Cuin T A.Potassium transport and plant salt tolerance[J].Physiologia Plantarum, 2008, 133(4):651-669[32]Schachtman D P, Schroeder J I.Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants [J[J].Nature, 1994, 370:655-658[33]Shi H, Wu S J, Zhu J K.Overexpression of a plasma membrane Na+H+ antiporter improves salt tolerance in Arabidopsis[J].Nature Biotechnology, 2003, 21(1):81-85[34]Shi H, Ishitani M, Kim C, et al.The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+H+ antiporter[J].Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12):6896-6901[35]Su H, Golldack D, Zhao C, et al.The expression of HAK-type K+ transporters is regulated in response to salinity stress in common ice plant[J].Plant Physiology, 2002, 129(4):1482-1493[36]Takahashi R, Nishio T, Ichizen N, et al.Cloning and functional analysis of the K+ transporter,PhaHAK2,from salt-sensitive and salt-tolerant reed plants[J].Biotechnology Letters, 2007, 29(3):501-506[37]Takahashi R, Nishio T, Ichizen N, et al.High-affinity K+ transporter PhaHAK5 is expressed only in salt-sensitive reed plants and shows Na+ permeability under NaCl stress[J].Plant Cell Reports, 2007, 26(9):1673-1679[38]Tian L, Huang C, Yu R, et al.Overexpression AtNHX1 confers salt-tolerance of transgenic tall fescue[J].African Journal of Biotechnology, 2006, 5(11):1041-1044[39]Wang J, Zuo K, Wu W, et al.Expression of a novel antiporter gene from Brassica napus resulted in enhanced salt tolerance in transgenic tobacco plants[J].Biologia Plantarum, 2004, 48(4):509-515[40]Wu C A, Yang G D, Meng Q W.The cotton GhNHX1 gene encoding a novel putative tonoplast Na+H+ antiporter plays an important role in salt stress[J].Plant Cell Physiol, 2004, 45(5):600-607[41]Wu Y Y, Chen Q J, Chen M, et al.Salt-tolerant transgenic perennial ryegrass (Lolium perenne L) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+H+ antiporter gene[J].Plant Science, 2005, 169(1):65-73[42]Yoon J Y, Hamayun M, Lee S K, et al.Methyl jasmonate alleviated salinity stress in soybean [J].[J].Journal of Crop Science and Biotechnology, 2009, 12(2):63-68[43]Zhang H X, Hodson J N, Williams J P, et al.Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation[J].Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(22):12832-12836