AM Fungi Glomous mosseae Promote Tobacco (Nicotiana tabacum) Growth by Regulating IAA Metabolism
ZHAO Fang-Gui*, DONG Zhi-Hao*, CHE Yong-Mei, LU Song-Chong, ZHANG Wen, LIU Xin**
Key Laboratory of Plant Biotechnology in Universities of Shandong Province/Life Science College, Qingdao Agricultural University, Qingdao 266109, China
Abstract:Indole-3-acetic acid (IAA) as a plant hormone participates in the regulation of many plant growth and development processes and plays an important role in the symbiosis between arbuscular mycorrhiza fungi (AMF) and land plants. But the regulation mechanism of AMF infection on auxin metabolism is unclear. In this study, the effects of Glomous mosseae (G.m) infection on the tobacco (Nicotiana tabacum) shoot height, leaf area, the IAA content, activities of enzymes involved in IAA metabolism and related gene transcript levels in tobacco leaves were analyzed, aimed to elucidate the relationship between the AMF induced growth improvement and the metabolism of endogenous IAA. The results showed that G.m inoculation promoted tobacco growth displayed by improvement in increase rates in shoot height and leaf area compared with those of control (without inoculation). The IAA content, activities of peroxidase (POD) and indole-3-acetic acid oxidase (IAAO), enzymes participate in the degradation of auxin, decreased in inoculated plants. G.m infection caused up regulation in transcript levels of IAA synthetic enzyme gene (NtAMI1), IAA responsive factor genes (NtARF1) as well as auxin transcriptional regulator gene (NtIAA9), depressed the expression of auxin-repressed protein (NtARP1;1). Therefore, it can be deduced that G.m infection improved tobacco growth by promoting NtAMI1-dependent IAA production, inhibiting POD and IAAO-dependent IAA degradation, as well as increasing IAA function by up-regulating NtARF1 and NtIAA9 expression and down-regulating NtARP1;1 expression. These results provide the scientific basis lights for the deep understanding of the promoting effect of AMF on plant growth.
[1] 贺超, 陈伟燕, 贺学礼, 等. 2016. 不同水肥因子与AM真菌对黄芩生长和营养成分的交互效应[J]. 生态学报, 36(10) : 2798-2806. (He C, Chen W Y, He X L, et al.2016. Interactive effects of arbuscular mycorrhizal fungi under different soil water and fertilizer conditions on the plant growth and nutrients of Scutellaria baicalensis Georgi[J]. Acta Ecologica Sinica, 36(10) : 2798-2806.) [2] 贺学礼, 刘媞, 安秀娟, 等. 2009. 水分胁迫下AM真菌对柠条锦鸡儿(Caragana korshinskii)生长和抗旱性的影响[J]. 生态学报, 29(10): 47-52. (He X L, liu T, An X J, et al.2009. Effects of AM fungi on the growth and drought resistance of Caragana korshinskii under water stress conditions[J]. Acta Ecologica Sinica, 29(10): 47-52.) [3] 江龙, 李竹玫, 黄建国, 等. 2008. AM真菌对烟苗生长及某些生理指标的影响[J]. 植物营养与肥料学报, 14(1): 156-161. (Jiang L, Li Z M, Huang J G, et al.2008. Influences of arbuscular mycorrhizal fungi on growth and selected physiological indices of tobacco seedlings[J]. Plant Nutrition and Fertilizer Science, 14(1): 156-161.) [4] 李建伟, 江龙, 袁玲,等. 2010. 不同施肥量条件下真菌对烟苗生长及营养状况的影响[J]. 植物营养与肥料学报, 16(5): 1190-1195. (Li J W, Jiang L, Yuan L, et al.2010. Influences of arbuscular mycorrhizal fungi on growth and nutrition of tobacco seedlings under different fertilizer level[J]. Plant Nutrition and Fertilizer Science, 16(5): 1190-1195.) [5] 李林川, 瞿礼嘉. 2006. 生长素对拟南芥叶片发育调控的研究进展[J].植物学通报, 23(5):459-465. (Li L C, Qu L X.2006. Regulation of leaf development by auxin in Arabidopsis[J]. Chinese Bulletin of Botany, 23(5):459-465.) [6] 李明, 黄卓烈, 谭绍满, 等. 2000. 难易生根桉树多酚氧化酶、吲哚乙酸氧化酶活性及其同工酶的比较研究[J]. 林业科学研究, 13(5):493-500. (Li M, Huang Z L, Tan S M, et al.2000. Comparison on the activities and isoenzymes of polyphenol oxidase and indoleacetic acid oxidase of difficult-and easy-to-root eucalyptus species[J]. Forest Research, 13(5):493-500.) [7] 梁宇, 郭良栋, 马克平. 2002. 菌根真菌在生态系统中的作用[J]. 植物生态学报, 26(6): 739-745. (Liang Y, Guo L D, Ma K P.2002. The role of mycorrhizal fungi in ecosystems[J]. Acta Phytoecologica Sinica, 26(6): 739-745.) [8] 刘洪庆, 车永梅, 刘新, 等. 2012. H2O2参与AM真菌与烟草共生过程[J]. 生态学报, 32(19):6085-6091. (Liu H Q, Che Y M, Liu X, et al.2012. Hydrogen peroxide participates symbiosis between AM fungi and tobacco plants[J]. Acta Ecologica Sinica, 32(19): 6085-6091.) [9] 刘润进, 陈应龙. 2007. 菌根学[M]. 北京: 科学出版社, pp.386-387. (Liu R J, Chen Y L.2007. Mycorrhizology[M]. Beijing: Science Press, pp. 386-387.) [10] 穆宏平, 陈贻竹, 叶万辉,等. 2010. 不同来源AM真菌对朱砂根生长和生理特征的影响[J]. 生物多样性, 18(1): 83-89. (Mu H P, Chen Y Z, Ye W H, et al.2010. Effects of arbuscular mycorrhizal fungi from different sources on the growth and physiology of Ardisia crenata[J]. Biodiversity Science, 18(1): 83-89.) [11] 宋福强, 程蛟, 常伟, 等. 2013. 田间施加AM菌剂对大豆生长效应的影响[J]. 中国农学通报, 29(6): 69-74. (Song F Q, Cheng J, Chang W, et al.2013. The impact of AM fungi on soybean growth with AM inoculum addition in field[J]. Chinese Agricultural Science Bulletin, 29(6): 69-74.) [12] 王家利, 刘冬成, 郭小丽, 等. 2012. 生长素合成途径的研究进展[J]. 植物学报, 47(3): 292-301. (Wang J L, liu D C, Guo X L, et al.2012. Research advances in auxin biosynthesis[J]. Chinese Bulletin of Botany, 47(3): 292-301.) [13] 王玮, 赵方贵, 刘新, 等. 2013. NO参与AM真菌与烟草共生过程[J]. 生态学报, 33(23): 7583-7588. (Wang W, Zhao F G, Liu X, et al.2013. Nitric oxide participates symbiosis between am fungi and tobacco plants[J]. Acta Ecologica Sinica, 33(23): 7583-7588.) [14] 王若仲, 萧浪涛, 蔺万煌, 等. 2002. 亚种间杂交稻内源激素的高效液相色谱测定法[J]. 色谱, 20(2): 148-150. (Wang R Z, Xiao L T, Lin W H, et al.2002. High performance liquid chromatographic determination of internal hormones in inter-subspecific hybrid rice[J]. Chinese Journal of Chromatography, 20(2):148-150.) [15] 翟开恩, 潘伟槐, 叶晓帆, 等. 2015. 高等植物局部生长素合成的生物学功能及其调控机制[J].植物学报, 50(02):149-158. (Zhai K E, Pan W H, Ye X L, et al.2015. Biological functions and regulatory mechanisms of local auxin biosynthesis in higher plants[J]. Chinese Bulletin of Botany, 50(02): 149-158.) [16] 张华, 孙纪全, 包玉英. 2015. 丛枝菌根真菌影响植物次生代谢产物的研究进展[J].农业生物技术学报, 23(08):1093-1103. (Zhang H,Sun J Q,Bao Y Y.2015. Advances in studies on plant secondary metabolites influenced by arbuscular mycorrhizal fungi[J]. Journal of Agricultural Biotechnology, 23(8): 1093-1103.) [17] Abdel-Lateif K, Bogusz D, Hocher V.2012. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria[J]. Plant Signaling and Behavior, (7): 1-6. [18] Ellis C M, Nagpal P, et al.Young J C.2005. Auxin response factor1 and auxin response factor 2 regulate senescence and floral organ abscission in Arabidopsis thaliana[J]. Development, 132: 4563-574. [19] Etemadi M, Gutjahr C, Couzigou J M, et al.2014. Auxin perception is required for arbuscule development in arbuscular mycorrhizal symbiosis[J]. Plant Physiology, 166(1): 281-292. [20] Fitze D, Wiepning A, Kaldorf M, et al.2005. Auxins in the development of an arbuscular mycorrhizal symbiosis in maize[J]. Plant Physiology, 162(11): 1210-1219. [21] Genre A, Chabaud M, Balzergue C, et al.2013. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone[J]. New Phytologist, 198: 190-202. [22] Hanlon M T, Coenen C.2011. Genetic evidence for auxin involvement in arbuscular mycorrhizal initiation[J]. New Phytologist, 189: 701-709. [23] He F, Sheng M, Tang M.2017. Effects of rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought stress[J]. Frontiers in Plant Science, 8(e63930): 183. [24] Helber N,Wippel K, Sauer N, et al.2011. A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants[J]. The Plant Cell, 23: 3812-3823. [25] Li F, Zhang H, Wang S, et al.2016. Identification of topping responsive proteins in tobacco roots[J]. Front Plant Science, (7): 582. [26] Ludwig-Müller J, Güther M.2007. Auxins as signals in arbuscular mycorrhiza formation[J]. Plant Signaling and Behavior, 2(3): 194-196. [27] Ludwig-Müller J, Kaldorf M, Sutter E G, et al.1997. Indole-3-butyric acid (IBA) is enhanced in young maize (Zea mays L.) roots colonized with the arbuscular mycorrhizal fungus Glomus intraradices[J]. Plant Science, 125(2): 153-162. [28] Maillet F, Poinsot V, Andre´ O, et al.2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza[J]. Nature, 469: 58-63. [29] Meixner C, Ludwig-Müller J, Miersch O, et al.2005. Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutant nts1007[J]. Planta, 222(4): 709-715. [30] Shaul-Keinan O, Gadkar V, Ginzberg I, et al.2002. Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices [J]. New Phytologist, 154(2): 501-508. [31] Torelli A, Trotta A, Acerbi L, et al.2000. IAA and ZR content in leek (Allium porrum L.), as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development[J]. Plant Soil, 226:29-35. [32] Zhao Y, Li C, Ge J, et al.2014. Recessive mutation identifies auxin-repressed protein ARP1, which regulates growth and disease resistance in tobacco[J]. Molecular Plant-Microbe Interactions, 27(7): 638-654.