Abstract:Abstract Antifreeze proteins (AFPs) is a kind of special small molecule protein produced by cold-resistant organisms for adapting low temperature environment, and it can decrease ice point and inhibit ice recrystalization. In this research, the expression level of DcAFP from carrot (Daucus carota) driven by environment inducible promoter Prd29A (responsive to desiccation 29A) and constitutive promoter Cauliflower mosaic virus 35S (CaMV35S) in transgenic tobacco (Nicotiana tabacum) were detected. The results showed that the DcAFP gene has been integrated into tobacco genome and could express stably in progeny. The phenotype of inflorescence in T1 transgenic tobacco was dysplasia, and its capsule was easily to detach from the carpopodium, and few fruits could develop normally. After 4 ℃ acclimation for 10 d, -1 ℃ low temperature treatment for 24 h and 25 ℃ recover for 7 d, the survival rate of T1 tobacco plants transformed with Prd29A:AFP was 34.6% higher than that transformed with CaMV35S:AFP, and was 61.1% higher than wild type tobacco plants. T1 tobacco plants transformed with Prd29A:AFP grew well, while wild type tobacco was most dead. The chlorophyll fluorescence parameters (Fv/Fm) of all kinds of tobacco plants were decreased under cold stress, but after 25 ℃ recover, the Fv/Fm in Prd29A:AFP transgenic tobacco restored to the normal level, but the Fv/Fm in CaMV35S:AFP transgenic tobacco was just a little higher than that in wild type tobacco. Compared with wide type tobacco, proline content, soluble sugar content and soluble protein content in the two DcAFP transgenic tobacco under cold acclimation at 4 ℃ were increased, and the activity of superoxide dismutase (SOD) and peroxidase (POD) enhanced, and isozyme bands were increased. At the same condition, proline content, soluble sugar content, soluble protein content as well as SOD and POD activity in Prd29A:AFP transgenic tobacco were 45.1%, 12.1%, 20%, 19.7% and 8.6% higher than that in CaMV35S:AFP transgenic tobacco, respectively. The results demonstrated that the expression of DcAFP driven by Prd29A promoter could significantly enhance the cold tolerance of transgenic tobacco and had fewer effects on plant growth. These results have great reference value for breeding new cold tolerant transgenic plant varieties.
[1]陈曦, 代焕琴, 张旭家, 等.低温诱导及+信号对胡萝卜悬浮培养细胞抗冻蛋白的合成及细胞 抗冻能力的影响[J].科学技术与工程, 2002, 2(3):23-26
[2]陈玉珍, 李凤兰.低温锻炼对绵头雪莲花组织培养苗抗寒性及抗氧化酶活性的影响[J].植物生理与分子生物学学报, 2005, 31(4):437-440
[3]郭娟, 康运凯, 曹巍, 等.抗冻蛋白TmAFP84在毕赤酵母中的表达[J].中国卫生检验杂志, 2013, (16):3225-3228
[4]黄永芬, 赵晓祥.美洲拟鲽抗冻蛋白基因导入番茄的研究[J].中国生物化学与分子生物学报, 1997, 13(4):418-422
[5]简令成, 卢存福, 李积宏.适宜低温锻炼提高冷敏感植物玉米和番茄的抗冷性及其生理基础[J].作物学报, 2005, 31(8):971-976
[6]刘爱荣, 张远兵, 黄守程, 等.根际不同供氮水平对紫青菜生长和营养品质的影响[J].热带亚热带植物学报, 2016, 24(1):56-62
[7]李永亮, 董雪妮, 雷志, 等.转HhERF2和PeDREB2a基因棉花对胁迫的耐受能力分析[J].中国农业科技导报, 2015, (3):19-28
[8]卢存福, 王红, 简令成, 等.植物抗冻蛋白研究进展[J].生物化学与生物物理进展, 1998, 21(3):210-216
[9]聂利珍, 于肖夏, 李国婧, 等.启动子驱动基因转化马铃薯的研究[J].中国生物 工程杂志, 2015, 35(11):13-22
[10]王艳, 邱立明, 谢文娟, 等.昆虫抗冻蛋白基因转化烟草的抗寒性[J].作物学报, 2008, 34(3):397-402
[11]押辉远, 秦广雍, 霍裕平.及的克隆和干旱诱导型植物表达载体的构建与鉴定[J].植物生理学报, 2005, 41(3):371-375
[12]张党权, 刘兵, 范云, 何炎明, 王金发.胡萝卜抗冻蛋白在大肠杆菌中的高效表达[J].中山大学学报自然科学版, 2003, 42(3):51-55
[13]张梅, 刘君, 杨志民, 等.高温胁迫对草地早熟禾抗氧化酶活性及其同工酶图谱的影响[J].草地学报, 2014, 22(6):1308-1317
[14]张振华, 陈介南, 卢孟柱, 等.胡萝卜与黄粉虫抗冻融合基因在拟南芥中的表达与抗冻性分析[J].中国农学通报, 2012, 28(31):146-152
[15]种培芳, 李毅, 苏世平.荒漠植物红砂叶绿素荧光参数日变化及其与环境因子的关系[J].中国沙漠, 2010, 30(3):539-545
[16]Andrews C J.How Do Plants Survive Ice?[J].Annals of Botany, 1996, 78(5):529-536
[17]Atici O, Nalbantoglu B.Antifreeze proteins in higher plants[J].Phytochemistry, 2003, 64(7):1187-96
[18]Babita M.Osmotic adjustment,drought tolerance and yield in castor (Ricinus communis L) hybrids[J].Environmental & Experimental Botany, 2010, 69(3):243-249
[19]Castor Ricinus communis L.hybrids[J].Environmental & Experimental Botany, 2010, 69(3):243-249
[20]Bates L S, Waldren R P, Teare I D.Rapid determination of free proline for water-stress studies[J].Plant and Soil, 1973, 39(1):205-207
[21]Benfey P N, Ren L, Chua N H.Combinatorial and synergistic properties of CaMV 35S enhancer subdomains[J].Embo Journal, 1990, 9(6):1685-1696
[22]Bhomkar P, Upadhyay C P, Saxena M, et al.Salt stress alleviation in transgenic Vigna mungo LHepper (blackgram) by overexpression of the glyoxalase I gene using a novel Cestrum yellow leaf curling virus (CmYLCV) promoter[J].Molecular Breeding, 2008, 22(2):169-181
[23]Cheung R C, Ng T B, Wong J H.Antifreeze proteins from diverse organisms and their applications: An overview.[J].Current Protein & Peptide Science, 2016, 17(999):-
[24]Doucet C J, Byass L, Elias L, et al.Distribution and characterization of recrystallization inhibitor activity in plant and lichen species from the UK and maritime Antarctic[J].Cryobiology, 2000, 40(3):218-227
[25]Duman J G, Olsen T M.Thermal Hysteresis Protein Activity in Bacteria,Fungi,and Phylogenetically Diverse Plants[J].Cryobiology, 1993, 30(3):322-328
[26]Genty B, Briantais J M, Baker N R.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J].Biochimica et Biophysica Acta (BBA) - General Subjects, 1989, 990(1):87-92
[27]Gilbert J A, Hill P J, Dodd C E, et al.Demonstration of antifreeze protein activity in Antarctic lake bacteria[J].Microbiology, 2004, 150(Pt 1):171-
[28]Gittins J R, James D J.Transgene expression driven by heterologous ribulose-1,5-bisphosphate carboxylaseoxygenase small-subunit gene promoters in the vegetative tissues of apple (Malus pumila Mill)[J].Planta, 2000, 210(2):232-240
[29]Graether S P, Sykes B D.Cold survival in freeze-intolerant insects: the structure and function of beta-helical antifreeze proteins[J].European Journal of Biochemistry, 2004, 271(16):3285-96
[30]Gu X, Chen Y, Gao Z, et al.Transcription factors and anthocyanin genes related to low-temperature tolerance in rd29A : RdreB1BI, transgenic strawberry.[J].Plant Physiology & Biochemistry, 2015, (8):31-43
[31]Guy C L.Cold Acclimation and Freezing Stress Tolerance: Role of Protein Metabolism[J].Annual Review of Plant Physiology, 1990, 41(41):187-223
[32]Hightower R, Baden C, Penzes E, et al.Expression of antifreeze proteins in transgenic plants[J].Plant Molecular Biology, 1991, 17(5):1013-21
[33]Kasuga M, Liu Q, Miura S, et al.Improving plant drought,salt,and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J].Novartis Foundation Symposium, 2001, 17(3):287-91
[34]Kasuga M, Miura S, Shinozaki K, et al.A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer[J].Plant and Cell Physiology, 2004, 45(3):346-350
[35]Kenward K D, Brandle J, Mcpherson J, et al.Type II fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance[J].Transgenic Research, 1999, 8(2):105-117
[36]Knight C A, Hallett J, Devries A L.Solute effects on ice recrystallization: an assessment technique[J].Cryobiology, 1988, 25(1):55-60
[37]LEE J T, Prasad V, YANG P T, et al.Expression of Arabidopsis CBF1 regulated by an ABAstress inducible promoter in transgenic tomato confers stress tolerance without affecting yield[J].Plant, Cell & Environment, 2003, 26(7):1181-1190
[38]Liang Y, Chen Q I N, Liu Q.Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L)[J].Journal of Plant Physiology, 2003, 160(10):1157-
[39]Liu Q, Kasuga M, Sakuma Y, et al.Two Transcription Factors,DREB1 and DREB2,with an EREBPAP2 DNA Binding Domain Separate Two Cellular Signal Transduction Pathways in Drought-and Low-Temperature-Responsive Gene Expression,Respectively,in Arabidopsis[J].Plant Cell, 1998, 10(8):1391-1406
[40]Maxwell K.Chlorophyll fluorescence—a practical guide[J].Journal of Experimental Botany, 2000, 51(345):659-668
[41]Matzke M A, Matzke A J M.How and why do plants inactivate homologous (trans) genes?[J].Plant physiology, 1995, 107(3):679-
[42]Meyer K, Keil M, Naldrett M J.A leucine-rich repeat protein of carrot that exhibits antifreeze activity[J].Febs Letters, 1999, 447(2-3):171-178
[43]Meyer P.Understanding and controlling transgene expression[J].Trends in Biotechnology, 1995, 13(9):332-337
[44]Rajwanshi R, Kumar D, Yusuf M A, et al.Stress-inducible overexpression of glyoxalase I,is preferable to its constitutive overexpression for abiotic stress tolerance in transgenic Brassica juncea[J].Molecular Breeding, 2016, 36(6):1-15
[45]Sandve S R, Rudi H, Asp T, et al.Tracking the evolution of a cold stress associated gene family in cold tolerant grasses[J].BMC Evolutionary Biology, 2008, 8(1):245-
[46]Scotter A J, Marshall C B, Graham L A, et al.The basis for hyperactivity of antifreeze proteins[J].Cryobiology, 2006, 53(2):229-239
[47]Thomashow M F.PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms[J].Annual Review of Plant Biology, 1999, 50(50):571-599
[48]Worrall D; Elias L; Ashford D; Smallwood M; Sidebottom C; Lillford P; Telford J; Holt C; Bowles D.A carrot leucine-rich-repeat protein that inhibits ice recrystallization.[J].Science, 1998, 282(5386):115-117
[49]Xiong L, Schumaker K S, Zhu J K.Cell signaling during cold,drought,and salt stress[J].Plant Cell, 2002, 14(Suppl):S165-
[50]Xu WL, Liu MQ, Shen X, Lu CF.Expression of a Carrot 36 kD Antifreeze Protein Gene Improves Cold Stress Tolerance in Transgenic Tobacco[J].Forestry Studies in China, 2005, 7(4):11-15
[51]Yamaguchi-Shinozaki K, Shinozaki K.A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought,low-temperature,or high-salt stress[J].The Plant Cell, 1994, 6(2):251-264
[52]Zamani A, Sturrock R, Ekramoddoullah A K M, et al.Endochitinase activity in the apoplastic fluid of Phellinus weirii -infected Douglas-fir and its association with over wintering and antifreeze activity[J].Forest Pathology, 2003, 33(5):299-316
[53]Zhai Y, Wang Y, Li Y, et al.Isolation and molecular characterization of GmERF7, a soybean ethylene-response factor that increases salt stress tolerance in tobacco.[J]. 2012, 513(1):174.[J].Gene, 2013, 513(1):174-183
[54]Zhang C, Hannapel D J.Ice recrystallization inhibition proteins of perennial ryegrass enhance freezing tolerance[J].Planta, 2010, 232(1):155-64