Expression of MSTN Gene and Its Association Analysis with Meat Quality in Tibetan Sheep (Ovis aries)
ZHANG Jun-Xia1,2, LEI Xiu-Cun2, HE Na2, CUI Ya-Jie2, LYU Cai-Ling2, LI Ming-Ming2, LANG Xia1*, WANG Cai-Lian1*
1 Institute of Animal & Pasture Science and Green Agriculture/Key Laboratory for Sheep, Goat, and Cattle Germplasm and Straw Feed in Gansu Province, Gansu Academy of Agricultural Science, Lanzhou 730070, China; 2 College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
Abstract:As a muscle growth inhibitor, myostain (MSTN) is a member of TGF- β superfamily. MSTN mutation will cause excessive muscle growth and a "double muscle" phenotype. The gene is of great significance for improving muscle yield and lean meat rate of animals. The current study aimed to analyze the correlation between MSTN gene and meat production traits of Tibetan sheep (Ovis aries), six 6-month-old Tibetan sheep with similar body weight and no disease were randomly selected in this study. After slaughtering, slaughter performance, meat quality and meat nutritional components of Tibetan sheep were determined. The mRNA expression levels of MSTN gene in brachial triceps, quadriceps femoris, longissimus dorsi and semitendinosus of Tibetan sheep were detected by qPCR, and the correlation between the expression level of MSTN gene and meat production traits was analyzed. The results showed that all slaughter performance indexes were no significant difference between ram and ewe. The slaughter rates of ram and ewe were 51.32% and 52.01%, respectively, as well as the carcass weights were 22.08 and 20.03 kg, respectively. The results of meat quality analysis showed that there was no significant difference between male and female sheep except shear force (P<0.05). There were no significant differences in the contents of crude protein, crude fat, crude ash and water between ram and ewe. The protein contents were 23.14% and 22.17% for ram and ewe, respectively, and the crude fat contents of ram and ewe were 2.46% and 2.87%, respectively. MSTN gene was expressed in all muscle tissues of Tibetan sheep, but the differences of the expression levels in all muscle tissues were not significant. By analyzing the correlation between the expression level of MSTN gene and each index, the mRNA expression level of MSTN gene in arm triceps of Tibetan sheep was significantly positively correlated with the live weight before slaughter (P<0.05, 1.000); The expression level in longissimus dorsi muscle was significantly positively correlated with the redness value (P<0.05, 0.831), and it was extremely significantly negatively correlated with cooked meat rate (P<0.01, -0.958); The expression level in quadriceps femoris muscle was significantly negative correlated with cooked meat rate (P<0.01,-1.000); There was no significant correlation between MSTN gene expression in semitendinosus muscle and meat production indexes. Expression of MSTN gene was correlated with meat producing traits of Tibetan sheep. This study provides theoretical basis for the study of the regulation mechanism of MSTN gene on meat quality of Tibetan sheep.
张军霞, 雷秀存, 贺娜, 崔亚杰, 吕彩玲, 李明明, 郎侠, 王彩莲. 藏羊MSTN基因表达及其与产肉性状的关联性分析[J]. 农业生物技术学报, 2022, 30(5): 926-934.
ZHANG Jun-Xia, LEI Xiu-Cun, HE Na, CUI Ya-Jie, LYU Cai-Ling, LI Ming-Ming, LANG Xia1, WANG Cai-Lian1. Expression of MSTN Gene and Its Association Analysis with Meat Quality in Tibetan Sheep (Ovis aries). 农业生物技术学报, 2022, 30(5): 926-934.
[1] 仓明, 张驹, 梁浩, 等 . 2016. CRISPER-Cas9 系统介导的羊 MSTN 基因敲除和定点整合外源基因的方法 . 中国, CN105671080A[P]. (Cang M, Zhang J, Liang H, et al. 2016. Methods of MSTN gene knockout and site directed integration of foreign genes in sheep mediated by crispercas 9 system. China, CN105671080A[P]) [2] 陈佳欣, 张英杰 . 2020. 羊肉风味的形成及影响因素研究[J]. 饲料工业 , 41(23): 22-26. (Chen J X, Zhang Y J.2020. Study on the formation and influencing factors of mutton flavor[J]. Feed industry, 41(23): 22-26.) [3] 代舜尧, 冯勇, 涂永强, 等 . 2020. 玛格绵羊 12 月龄屠宰性能测定[J]. 四川畜牧兽医 , 47(03): 22-23, 26. (Dai S Y,Feng Y, Tu Y Q, et al.2020. Determination of slaughter performance of 12-month-old mage sheep[J]. Sichuan Animal Husbandry and veterinary, 47(03): 22-23, 26.) [4] 丁毅 .2019. MSTN 基因敲除滩羊的制备与评价[D]. 硕士学位论文, 西北农林科技大学, 导师: 陈玉林 . pp. 11-28. (Ding Y.2019. Preparation and evaluation of MSTN gene knockout Tan sheep[D]. Thesis for M. S., Northwest A & F University, Supervisor: Chen Y L. pp. 11-28.) [5] 董诗琳, 张梦帆, 李耀东 . 2020. MSTN 基因在动物生产中的研究进展[J]. 现代畜牧兽医, (12): 61-64. (Dong S L, Zhang M F, Li Y D. 2020. Research progress of MSTN gene in animal production[J]. Modern animal husbandry and veterinary, (12): 61-64) [6] 伏智亮, 沈如玉, 王绮绮, 等 . 2019. 肌肉生长抑制素调控肌肉和脂肪组织代谢的研究进展[J]. 畜牧与兽医 , 51(07): 121-126. (Fu Z L, Shen R Y, Wang Q Q, et al.2019. Research progress of myostatin regulating metabolism of muscle and adipose tissue[J]. Animal Husbandry and Veterinary, 51(07): 121-126.) [7] 高铎, 孙鹏 . 2021. 中草药添加剂在畜禽养殖中的应用潜力及挑战[J]. 家畜生态学报, 42(04): 7-12. (Gao D, SUNP.2021. Application potential and challenges of Chinese herbal medicine additives in livestock and poultry breeding[J]. Chinese Journal of Livestock Ecology, 42(04): 7-12.) [8] 管凇, 周汉林, 侯冠彧, 等 . 2013. 海南黑山羊 MSTN 基因的表达差异与发育性变化研究[J]. 家畜生态学报 , 34(11): 15-19. (Guan S, Zhou H L, Hou G Y, et al.2013. Expression difference and developmental change of MSTN gene in Hainan Heishan sheep[J]. Acta Zoologica Sinica, 34(11): 15-19.) [9] 江炎庭, 王思宇, 杨红远, 等 . 2019. 云上黑山羊 MSTN 基因的表达差异与发育性变化研究[J]. 中国草食动物科学 , 39(05): 10-13. (Jiang Y T, Wang S Y, Yang H Y, et al.2019. Expression difference and developmental change of MSTN gene in Yunshang black goat[J]. Chinese Herbivore Science, 39(05): 10-13.) [10] 康生萍, 胡林勇, 王循刚, 等 . 2021. 不同性别放牧青海黑藏羊的肉品质特征分析[J]. 西北农业学报 , (02): 1-9. (Kang S P, Hu L Y, Wang X G, et al. 2021. Analysis of meat quality characteristics of Qinghai black Tibetan sheep grazed by different genders[J]. Journal of northwest agriculture, (02): 1-9.) [11] 李锋红, 马友记, 常伟, 等 . 2015. 南非肉用美利奴羊与甘肃高山细毛羊杂交羔羊屠宰性能和肉品质测定[J]. 中国草食动物科学, 35(03): 10-13. (Li F H, Ma Y J, Chang W, et al.2015. Determination of slaughter performance and meat quality of crossbred lambs between South African Merino sheep and Gansu alpine fine wool sheep[J]. Chinese herbivore science, 35(03): 10-13.) [12] 刘皎 .2020. MSTN 基因敲除绒山羊生产性能及分子生物学评价[D]. 硕士学位论文, 西北农林科技大学, 导师: 王小龙 . pp. 11-40. (Liu J.2020. Production performance and molecular biological evaluation of MSTN gene knockout cashmere goat[D]. Thesis for M.S., Northwest University of agriculture and forestry science and technology, Supervisor: Wang X L. pp. 11-40.) [13] 刘志国, 王丽梅, 王华林, 等 . 2015. 多不饱和脂肪酸对大脑功能影响研究进展[J]. 食品科学 , 36(21): 284-290. (Liu Z G, Wang L M, Wang H L, 2015. Research progress on the effect of polyunsaturated fatty acids on brain function[J]. Food science, 36(21): 284-290.) [14] 马丽娜, 李颖康, 于洋, 等 . 2015. MSTN 基因在不同月龄滩羊不同肌肉组织中的定量表达研究[J]. 畜牧与饲料科学 , 36(08): 33-34, 120. (Ma L N, Li Y K, Yu Y, et al.2015. Quantitative expression of MSTN gene in different muscle tissues of Tan sheep[J]. Animal Husbandry and Feed Science, 36(08): 33-34, 120.) [15] 马蓉 .2016. 高寒地区欧拉型藏羊体尺指标与屠宰性能的相关性[J]. 上海畜牧兽医通讯, (01): 46-47. (Ma R. 2016. Correlation between body size index and slaughter performance of Oula Tibetan sheep in alpine region[J]. Shanghai Animal Husbandry and veterinary communication, (01): 46-47.) [16] 牛怡源 .2017. CRISPR/Cas9 基因编辑系统介导的多基因敲除滩羊的制备与评价[D]. 硕士学位论文, 西北农林科技大学, 导师: 陈玉林 . pp. 11-33. (Niu Y Y.2017. Preparation and evaluation of multi gene knockout Tan sheep mediated by CRISPR/cas9 gene editing system [D]. Thesis for M. S., Northwest University of agriculture and forestry science and technology, Supervisor: Chen Y L. pp. 11-33.) [17] 田亚磊, 宗珊颖, 吉进卿, 等 . 2010. 河南大尾寒羊屠宰性能和肉质特性研究[J]. 云南农业大学学报(自然科学版), 25(02): 226-229. (Tian Y L, Zong S Y, Ji J Q, et al.2010. Study on slaughter performance and meat quality of Henan big tail Han sheep[J]. Journal of Yunnan Agricultural University (Natural Science Edition), 25(02): 226-229.) [18] 吐来力江·哈木太 .2014. MSTN/Smad 信号通路与阿勒泰羊肌肉生长发育、产肉性能关联性的研究[D]. 硕士学位论文, 新疆农业大学, 导师: 决肯·阿尼瓦什 . pp. 14-43. (Tulailijiang·H M T.2014. Study on the relationship between MSTN/Smad signaling pathway and muscle growth and meat production performance of Altay sheep D]. Thesis for M. S., Xinjiang Agricultural University, Supervisor: Jueken·A N W S. pp. 14-43.) [19] 王芳 .2021. 不同品种、月龄和部位绵羊肉品质的比较与分析[D]. 硕士学位论文, 中国农业科学院, 导师: 高雅琴 . pp. 45. (Wang F.2021. Comparison and analysis of mutton quality of different breeds, ages and parts[D]. Thesis for M.S., Chinese Academy of Agricultural Sciences, supervisor: Gao Y Q, pp. 45.) [20] 王杰, 王永, 欧阳熙, 等 . 2000. 藏山羊肉的品质研究[J]. 四川草原 , (02): 50-53. (Wang J , Wang Y, Ou Y X, et al. 2000. Study on the quality of Tibetan goat meat[J]. Sichuan Grassland, (02): 50-53.) [21] 姚力丹, 祖玲玲, 马晓燕, 等 . 2016. 新疆 5 个品种羊不同月龄 MSTN 基因 mRNA 表达水平及其与生长性状相关性分析[J]. 中国畜牧兽医, 43(02): 462-470. (Yao L D, Zu L L, Ma X Y, et al.2016. Expression level of MSTN gene mRNA and its correlation with growth traits of five breeds of sheep in Xinjiang[J]. Chinese Animal Husbandry and Veterinary, 43(02): 462-470.) [22] 赵有璋 .2002. 羊生产学[M]. 北京: 中国农业出版社, 北京 . pp. 49-56. (Zhao Y Z.2002. Sheep Production[M]. China Agriculture Press, Beijing, China. pp. 49-56.) [23] 朱秋宇, 胡兰 . 2014. 动物机体中肌肉生长抑制素基因的研究进展[J]. 现代畜牧兽医, (09): 51-55. (Zhu Q Y, Hu L. 2014. Research progress of myostatin gene in animal body[J]. Modern Animal Husbandry and Veterinary, (09): 51-55.) [24] 朱蓉慧 .2018. 敲除FGF5、MSTN 基因的北白绒山羊生理生化指标检测及适应性研究[D]. 硕士学士论文, 西北农林科技大学, 导师: 陈玉林 . pp. 8-26. (Zhu R H.2018. Detection of physiological and biochemical indexes and adaptability of North white cashmere goat with FGF5 and MSTN gene knockout[D]. Thesis for M. S., Northwest A&F University, Supervisor: Chen Y L. pp. 8-26.) [25] Alexandra C, McPherron, Ann M, et al.1997. Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member[J]. Nature, 387(6628): 83-90. [26] Doyle J L, Berry D P, Veerkamp R F, et al.2020. Genomic regions associated with muscularity in beef cattle differ in [27] five contrasting cattle breeds[J]. Genetics Selection Evolution, 52(1): 2-14. [28] Hopkins D L, Fogarty N M, Mortimer S I.2011. Genetic related effects on sheep meat quality[J]. Small Ruminant Research, 101(1-3): 160-172. [29] Hopkins D L, Stanley D F, Martin L C, et al.2007. Genotype and age effects on sheep meat production[J]. Australian Journal of Experimental Agriculture, 47(10): 1155-1164. [30] Jakaria J, Aliyya W, Ismail R, et al.2021. Discovery of SNPs and indel 11-bp of the myostatin gene and its association with the double-muscled phenotype in Belgian blue crossbred cattle[J]. Gene, 784(6): 145598. [31] Kang J D, Xuan M F, Luo Z B, et al.2020. Generation of myostatin gene knockout boars by somatic cell nuclear transfer[J]. Reproduction, Fertility and Development, 32: 1203-1224. [32] Lin J, Arnold Heather B, Della F M An, et al.2002. Myostatin knockout in mice increases myogenesis and decreases adipogenesis[J]. Biochemical and Biophysical Research Communications, 291(3): 701-706. [33] Lv Q, Yuan L, Deng J, et al.2016. Efficient generation of myostatin gene mutated rabbit by CRISPR/Cas9[J]. Reproduction, 6: 25029. [34] Sen A R, Santra A, Karim S A.2004. Carcass yield, composition and meat quality attributes of sheep and goat under semiarid conditions[J]. Meat Science, 66(4):757-763. [35] Smoucha G, A Kozubska-Sobocińska, Koseniuk A, et al.2020. Polymorphism of the myostatin (MSTN) gene in Landes and Kielecka geese breeds[J]. Animals: An Open Access Journal from MDPI, 10(1): 1021-1033. [36] Wang K, Tang X, Xie Z, et al.2017. CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs[J]. Transgenic Research, 226(6): 1-7. [37] Watkins P J, Frank D, Singh T K, et al.2013. Sheep meat flavor and the effect of different feeding systems: A Review[J]. Journal of Agricultural & Food Chemistry, 61(15): 3561-3579.