Isolation, Identification, Denitrification Characteristics of a Highly Efficient Aerobic Denitrifying Bacterial Strain DS2
WANG He1,2, YI Meng-Meng2, WANG Miao2, GAO Feng-Ying2, KE Xiao-Li2, CAO Jian-Meng2, LIU Zhi-Gang2, LU Mai-Xin2,*
1 College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China; 2 Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science/Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture/Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, China
Abstract:Excess nitrogen in the aquaculture waterbodies has caused deterioration of the aquaculture environment, and seriously affects the benefits of aquaculture. Microbial denitrification is one of the most economical and effective measures for the treatment of nitrogenous pollutants. In this study, a high-efficiency aerobic denitrifying bacteria DS2 (GenBank No. PRJNA838789) was isolated from the biofilter filler of circulating water aquaculture system. Strain DS2 was identified as Pseudomonas putida based on physiological and biochemical characteristics, and analysis of 16S rRNA gene sequence. Single-factor experiment, denitrification experiment, and whole-genome sequencing technology were used to analyze the optimal growth conditions, denitrification performance and mechanism of strain DS2. The results showed that the strain grew fastest under the condition of 30 ℃, pH7, 250 r/min, and salinity of 10‰~20‰. After 24 h of cultivation in heterotrophic nitrification medium (HNM), short-cut denitrification medium (SDM), denitrification medium (DM), and simultaneous nitrification and denitrification medium (SNDM), the total nitrogen (TN) removal efficiency of strain DS2 was 93.50%, 55.60%, 65.98%, 90.10%, respectively. Moreover, the functional genes related to nitrogen metabolism were defined in the genome of strain DS2, such as narB, nirK, nirA, norB, and nirB. Finally, in aquaculture wastewater treatment experiment, strain DS2 obtained 99.72% removal rate of nitrate and 89.52% removal rate of TN in 12 h. The present study indicates that Pseudomonas putida strain DS2 is a high efficiency aerobic denitrifying bacterium, and possesses great potential for application in aquaculture wastewater treatment.
[1] 布坎南R E, 吉本斯 N E. 1984. 伯杰细菌鉴定手册[M]. 北京: 科学出版社, pp. 729-740. (Buchanan R E, Gibbons N E.1984. Bergey's Manual of Systemaic Bacteriology[M]. Science Press, Beijing, China, pp. 729-740.) [2] 冯亮, 袁春燕, 杨超, 等. 2020. 好氧反硝化生物脱氮技术的研究进展[J]. 微生物学通报, 47(10): 3342-3354. (Feng L, Yuan C Y, Yang C, et al.2020. Research progress in nitrogen removal by aerobic denitrification[J]. Microbiology China, 47(10): 3342-3354.) [3] 李忠徽,王淼,衣萌萌,等. 2019. 一株异养硝化巨大芽胞杆菌的分离鉴定及其脱氮性能研究[J]. 农业生物技术学报, 27(8): 1331-1340. (Li Z H, Wang M, Yi M M, et al.2019. Isolation, identification and denitrification performance of a heterophic nitrifying Bacillus megaterium[J]. Journal of Agricultural Biotechnology, 27(8): 1331-1340.) [4] 李思琦, 杨静丹, 刘琳, 等. 2020. 好氧反硝化菌Achromobacter sp.L16的脱氮特性[J]. 生物技术通报, 36(06): 93-101. (Li S Q, Yang J D, Liu L, et al.2020. Denitrification characteristics of aerobic denitrifying bacteria Achromobacter sp. L16[J]. Biotechnology Bulletin, 36(06): 93-101.) [5] 李文甫, 杜柳冰, 刘思莹, 等. 2019. 一株高效好氧反硝化细菌的分离鉴定及脱氮性能研究[J]. 生物技术通报, 35(09): 202-209. (Li W F, Du L B, Liu S Y, et al.2019. Isolation and identification of an efficient aerobic denitrifying bacterium[J]. Biotechnology Bulletin, 35(09): 202-209.) [6] 刘晶晶, 汪苹, 王欢. 2008. 一株异养硝化-好氧反硝化菌的脱氮性能研究[J]. 环境科学研究, (03): 121-125. (Liu J J, Wang P, Wang H. 2008. Study on denitrification characteristics of a heterotrophic nitrification-aerobic denitrifier[J]. Researeh of Environmental Sciences, (03): 121-125.) [7] 孙丹凤, 高会杰. 2021. 菌株DN-3的分离鉴定及其脱氮性能研究[J]. 当代化工, 50(05): 1017-1021. (Sun D F, Gao H J.2021. Research on separation, identification and denitrification characteristics of an aerobic denitrifying strains DN-3[J]. Contemporary Chemical Industry, 50(05): 1017-1021.) [8] 汪旭晖, 杨垒, 任勇翔, 等. 2019. 异养硝化细菌Pseudomonas putida YH的脱氮特性及降解动力学[J]. 环境科学, 40(04): 1892-1899. (Wang X H, Yang L, Ren Y X, et al.2019. Nitrogen removal by heterotrophic nitrifying bacterium Pseudomonas putida YH and its kinetic characteristics[J]. Environmental Science, 40(04): 1892-1899.) [9] 向书迪, 冶青, 冯密,等. 2019. 一株耐冷好氧反硝化菌的同时硝化反硝化特性[J]. 农业生物技术学报, 27(07): 1282-1290. (Xiang S D, Ye Q, Feng M, et al.2019. Simultaneous nitrification and denitrification characteristics of a coldtolerant aerobic denitrifying bacteria[J]. Biotechnology Bulletin, 27(07): 1282-1290.) [10] 杨达, 赵婉宁, 陈越, 等. 2020. 活性污泥法驯化一株好氧反硝化细菌[J]. 首都师范大学学报(自然科学版), 41(06): 31-35. (Yang D, Zhao W N, Chen Y, et al.2020. Domestication of an aerobic denitrifying bacteria by activated sludge method[J]. Journal of Capital Normal University (Natural Science Edition), 41(06): 31-35.) [11] An Q, Zhou Y, Zhao B, et al.2020. Efficient ammonium removal through heterotrophic nitrification-aerobic denitrification by Acinetobacter baumannii strain AL-6 in the presence of Cr (Ⅵ)[J]. Journal of Bioscience and Bioengineering, 130(06): 622-629. [12] Bell L C, Ferguson S J1991. Nitric and nitrous oxide reductases are active under aerobic conditions in cells of Thiosphaera pantotropha[J]. Biochemical Journal, 273(Pt 2): 423-427. [13] Béné C, Arthur R, Norbury H, et al.2016. Contribution of fisheries and aquaculture to food security and poverty reduction: Assessing the current evidence[J]. World Development, 79: 177-196. [14] Chen J W, Strous M.2013. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution[J]. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1827(2): 136-144. [15] Chen S H, He S Y, Wu C J, et al.2019. Characteristics of heterotrophic nitrification and aerobic denitrification bacterium Acinetobacter sp. T1 and its application for pig farm wastewater treatment[J]. Journal of Bioscience and Bioengineering, 127(2): 201-205. [16] Chiu Y C, Lee L L, Chang C N, et al.2007. Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor[J]. International Biodeterioration & Biodegradation, 59(1): 1-7. [17] Cui Y, Cui Y W, Huang J L2021. A novel halophilic Exiguobacterium mexicanum strain removes nitrogen from saline wastewater via heterotrophic nitrification and aerobic denitrification[J]. Bioresource Technology, 333: 125189. [18] Deng M, Zhao X L, Senbati Y K, et al.2021. Nitrogen removal by heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas sp. DM02: Removal performance, mechanism and immobilized application for real aquaculture wastewater treatment[J]. Bioresource Technology, 322: 124555. [19] FAO.2018. The State of World Fisheries and Aquaculture 2016-Meeting the Sustainable Development Goals[R]. Rome: FAO, pp. 5. [20] Guo L Y, Chen Q K, Fang F, et al.2013. Application potential of a newly isolated indigenous aerobic denitrifier for nitrate and ammonium removal of eutrophic lake water[J]. Bioresource Technology, 142: 45-51. [21] Hu Z, Lee J W, Chandran K, et al.2012. Nitrous oxide (N2O) emission from aquaculture: A review[J]. Environmental Scienece & Technology, 46(12): 6470-6480. [22] Huang X F, Li W G, Zhang D Y, et al.2013. Ammonium removal by a novel oligotrophic Acinetobacter sp Y16 capable of heterotrophic nitrification-aerobic denitrification at low temperature[J]. Bioresource Technology, 146: 44-50. [23] Huang X J, Jiang D H, Ni J P, et al.2021. Removal of ammonium and nitrate by the hypothermia bacterium Pseudomonas putida Y-9 mainly through assimilation[J]. Environmental Technology & Innovation, 22: 101458. [24] Huang X J, Weisener C G, Ni J P, et al.2020. Nitrate assimilation, dissimilatory nitrate reduction to ammonium, and denitrification coexist in Pseudomonas putida Y-9 under aerobic conditions[J]. Bioresource Technology, 312: 123597. [25] Huang X J, Xu Y, He T X, et al.2019. Ammonium transformed into nitrous oxide via nitric oxide by Pseudomonas putida Y-9 under aerobic conditions without hydroxylamine as intermediate[J]. Bioresource Technology, 277: 87-93. [26] Jechalke S, Vogt C, Reiche N, et al.2010. Aerated treatment pond technology with biofilm promoting mats for the bioremediation of benzene, MTBE and ammonium contaminated groundwater[J]. Water Research, 44(6): 1785-1796. [27] Ji B, Yang K, Zhu L, et al.2015. Aerobic denitrification: A review of important advances of the last 30 years[J]. Biotechnology and Bioprocess Engineering, 20(4): 643-651. [28] Jia Y T, Zhou M M, Chen Y C, et al.2019. Carbon selection for nitrogen degradation pathway by Stenotrophomonas maltophilia: Based on the balances of nitrogen, carbon and electron[J]. Bioresource Technology, 294: 122114. [29] Jin P, Chen Y Y, Yao R, et al.2019. New insight into the nitrogen metabolism of simultaneous heterotrophic nitrification-aerobic denitrification bacterium in mRNA expression[J]. Journal of Hazardous Materials 371: 295-303. [30] Kong D D, Li W B, Deng Y L, et al.2018. Denitrification-potential evaluation and nitrate-removal-pathway analysis of aerobic denitrifier strain Marinobacter hydrocarbonoclasticus RAD-2[J]. Water, 10: 1298. [31] Martinez-Cordova L R, Emerenciano M, Miranda-Baeza A, et al.2015. Microbial-based systems for aquaculture of fish and shrimp: An updated review[J]. Reviews in Aquaculture 7(2): 131-148. [32] Padhi S K, Tripathy S, Sen R, et al.2013. Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater[J]. International Biodeterioration & Biodegradation, 78: 67-73. [33] Rout P R, Bhunia P, Dash R R.2017. Simultaneous removal of nitrogen and phosphorous from domestic wastewater using Bacillus cereus GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal[J]. Bioresource Technology, 244: 484-495. [34] Van Bussel C G J, Schroeder J P, Wuertz S, et al.2012. The chronic effect of nitrate on production performance and health status of juvenile turbot (Psetta maxima)[J]. Aquaculture, 326: 163-167. [35] Van Rijn J.2013. Waste treatment in recirculating aquaculture systems[J]. Aquaculture Engineering, 53: 49-56. [36] Volke D C, Calero P, Nikel P I.2020. Pseudomonas putida[J]. Trends in Microbiology, 28(6): 512-513. [37] Wang J L, Chu L B.2016. Biological nitrate removal from water and wastewater by solid-phase denitrification process[J]. Biotechnology Advances, 34(6): 1103-1112. [38] Xia L, Li X M, Fan W H, et al.2020. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. ND7 isolated from municipal activated sludge[J]. Bioresource Technology, 301: 122749. [39] Xie F X, Thiri M, Wang H.2021. Simultaneous heterotrophic nitrification and aerobic denitrification by a novel isolated Pseudomonas mendocina X49[J]. Bioresource Technology, 319: 124198. [40] Xu N, Liao M, Liang Y Q, et al.2021. Biological nitrogen removal capability and pathways analysis of a novel low C/N ratio heterotrophic nitrifying and aerobic denitrifying bacterium (Bacillus thuringiensis strain WXN-23)[J]. Environmental Research, 195: 110797. [41] Yang J X, Feng L, Pi S S, et al.2020. A critical review of aerobic denitrification: Insights into the intracellular electron transfer[J]. Science of the Total Environment, 731: 139080. [42] Zhang J B, Wu P X, Hao B, et al.2011. Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001[J]. Bioresource Technology, 102(21): 9866-9869. [43] Zhang M X, Li A Z, Yao Q, et al.2020. Nitrogen removal characteristics of a versatile heterotrophic nitrifying-aerobic denitrifying bacterium, Pseudomonas bauzanensis DN13-1, isolated from deep-sea sediment[J]. Bioresource Technology, 305: 122626. [44] Zhang N, Chen H, Lyu Y K, et al.2019. Nitrogen removal by a metal-resistant bacterium, Pseudomonas putida ZN1, capable of heterotrophic nitrification-aerobic denitrification[J]. Journal of Chemical Technology and Biotechnology, 94(4): 1165-1175. [45] Zhao T, Chen P, Zhang L, et al.2021. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. TAC-1 at low temperature and high ammonia nitrogen[J]. Bioresource Technology, 339: 125620. [46] Zhao Z R, Huang G H, He S S, et al.2019. Abundance and community composition of comammox bacteria in different ecosystems by a universal primer set[J]. Science of Total Environment, 691: 146-155. [47] Zheng M S, Fu H Z, Ho Y S.2017. Research trends and hotspots related to ammonia oxidation based on bibliometric analysis[J]. Environmental Science and Pollution Research, 24(25): 20409-20421. [48] Zheng Z J, Zhang D Y, Li W G, et al.2018. Substrates removal and growth kinetic characteristics of a heterotrophic nitrifying-aerobic denitrifying bacterium, Acinetobacter harbinensis HITLi7(T) at 2 degrees C[J]. Bioresource Technology, 259: 286-293. [49] Zumft W G.1997. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular Biology Reviews, 61: 533-616.