Effects of Long-term Biogas Slurry Fertilization on Bacterial Community Structure and Diversity in Soils of Areca Taro (Colocasia esculenta)
LIU Lan-Ying, HUANG Wei, LI Ying, LYU Xin, CHEN Li-Hua, LI Yue-Ren*
Institute of Agricultural Quality Standards and Testing Technology Research, Fujian Academy of Agricultural Science/Fujian Key Laboratory of Agro-products Quality & Safety, Fuzhou 350003, China
Abstract:Biogas slurry irrigation in farmland can solve the problem of subsequent disposal and the reduction of chemical fertilizers, which has become one of the important ways of resource utilization of livestock wastewater. In this study, a 6-year field experiment was conducted around a pig farm in Jian'ou City, Fujian Province to investigate the effects of biogas slurry application on soil bacterial community of areca taro (Colocasia esculenta) in different seasons and depths. Soil samples were collected in summer and winter at two different depths (0~20 cm and 20~40 cm). The soil with no application of biogas slurry was also collected as the control group. Bacterial community composition and diversity were investigated using Illumina MiSeq sequencing technology, and its relationship with soil properties was discussed. The results showed that the contents of soil organic matter, alkali-hydrolyzable nitrogen and available potassium increased in the biogas slurry treatment over control treatment. Also the contents of them were generally higher at the 0~20 cm than that at the 20~40 cm soil layers. Compared with the control, the long-term application of biogas slurry had a positive effect on improving the bacterial richness. For bacterial diversity, it varied according to seasons. The richness and diversity of soil bacteria in different seasons basically decreased with increasing soil depth, and the application of biogas slurry changed their seasonal variation. Bacterial community structure in the soil varied with biogas slurry irrigation. Proteobacteria, Actinobacteria, Firmicutes were the dominant plyumn of all soil samples. Long-term application of biogas slurry generally increased the relative abundance of Proteobacteria, Planctomycetes and Nitrospirae, but it decreased Actinobacteria. Moreover, Massilia and Geobacter belonging to Proteobacteria increased significantly in the long-term biogas slurry applied soil (P<0.05), while the proportion of Mizugakiibacter showed an opposite trend. Through redundancy analysis, it was found that soil bacterial community structure was greatly affected by soil available potassium. Long-term application of biogas slurry caused changes in soil microenvironment in different seasons and depths, and then led to changes in community composition and diversity of soil bacteria. These results can serve as a theoretical basis for evaluating the effects of biogas slurry application on the soil micro-ecological environment.
[1] 鲍士旦. 2000. 土壤农化分析[M]. 3版, 北京: 中国农业出版社, pp. 25-114. (Bao S D.2000. Soil Agro-chemistry Analysis[M]. 3rd edition, China Agriculture Press, Beijing. pp. 24-114.) [2] 边荣荣, 孙兆军, 何俊. 2018. 乔灌草组合对碱化盐土改良效果的研究[J]. 北方园艺, (10): 126-133. (Bian R R, Sun Z J, He J. 2018. Effect of shrub and grass combination on improvement of alkaline saline soil[J]. Northern Gardening, (10): 126-133.) [3] 陈懿, 吴春, 李彩斌, 等. 2020. 炭基肥对植烟黄壤细菌, 真菌群落结构和多样性的影响[J]. 微生物学报, 60(4): 653-666. (Chen Y, Wu C, Li C B, et al.2020. Effect of biochar-based fertilizer on bacterial and fungal community composition, diversity in tobacco-planting yellow soil[J]. Acta Microbiologica Sinica, 60(4): 653-666.) [4] 杜璨, 许晨阳, 王强, 等. 2017. 秦岭红桦林土壤细菌群落剖面分布特征及其影响因素[J]. 环境科学, 38(7): 3010-3019. (Du C, Xu C Y, Wang Q, et al.2017. Patterns of bacterial community through soil depth profiles and its influencing factors under Betula albosinensis Burkill in the xinjiashan forest region of Qinling Mountains[J]. Environmental Science, 38(7): 3010-3019.) [5] 冯丹妮, 伍钧, 杨刚, 等. 2014. 连续定位施用沼液对水旱轮作耕层土壤微生物区系及酶活性的影响[J]. 农业环境科学学报, 33(8): 1644-1651. (Feng D N, Wu J, Yang G, et al.2014. Influence of long-term applications of biogas slurry on microbial community composition and enzymatic activities in surface soil under rice-rape rotation[J]. Journal of Agro-Environment Science, 33(8): 1644-1651.) [6] 冯丹妮, 伍钧, 杨虎德. 2019. 连续施用沼液水稻油菜轮作耕层土壤的细菌多样性PCR-DGGE分析[J]. 甘肃农业科技, (8): 41-49. (Feng D N, Wu J, Yang H D. 2019. Bacterial diversity in topsoil of continuous application of biogas slurry rice-rape rotation analysised using PCR-DGGE[J]. Gansu Agricultural Science and Technology, (8): 41-49.) [7] 惠志文. 2017. 猪场沼液喷灌对竹林及土壤的影响[D]. 硕士学位论文, 江西农业大学, 导师: 赖发英, pp. 25-27. (Hui Z W.2017. Farm biogas slurry irrigation effects on bamboo forest and soil[D]. Thesis for M.S., Jiangxi Agricultural University, Suppervisor: Lai F Y, pp. 25-27.) [8] 黎慧娟, 彭静静. 2012. 异化Fe (III) 还原微生物研究进展[J]. 生态学报, 32(5): 1633-1642. (Li H J, Peng J J.2012. Recent advances in studies on dissimilatory Fe (III)-reducing microorganisms[J]. Acta Ecologica Sinica, 32(5):1633-1642.) [9] 李晨华, 张彩霞, 唐立松, 等. 2014. 长期施肥土壤微生物群落的剖面变化及其与土壤性质的关系[J]. 微生物学报, 54(3): 319-329. (Li C H, Zhang C X, Tang L S, et al.2014. Effect of long-term fertilizing regime on soil microbial diversity and soil property[J]. Acta Microbiologica Sinica, 54(3): 319-329.) [10] 李金融, 侯湖平, 王琛, 等. 2018. 基于高通量测序的复垦土壤细菌多样性研究[J]. 环境科学与技术, 41(12): 148-157. (Li J R, Hou H P, Wang C, et al.2018. Soil bacteria diversity of reclaimed soil based on high throughput sequencing[J]. Environmental Science & Technology, 41(12): 148-157.) [11] 牛世全, 杨建文, 胡磊, 等. 2012. 河西走廊春季不同盐碱土壤中微生物数量, 酶活性与理化因子的关系[J].微生物学通报, 39(3): 416-427. (Niu S Q, Yang J W, Hu L, et al.2012. Relationship with soil microbial quantity, soil enzyme activity and physicochemical factor between different saline-alkali soil in Hexi Corridor in spring[J]. Microbiology, 39(3): 416-427.) [12] 荣勤雷. 2018. 有机肥/秸秆替代化肥模式对设施菜田土壤团聚体微生物特性的影响[D]. 博士学位论文, 中国农业科学院, 导师: 黄绍文, pp. 96-99. (Rong Q L.2018. Effects of partial substitution of chemical fertilizer with organic amendments on microbial characteristics of soil aggregates in greenhouse vegetable production[D]. Thesis for Ph.D., Chinese Academy of Agricultural Sciences, Suppervisor: Huang S W, pp. 96-99.) [13] 宋晓培, 宋文静, 芦伟龙, 等. 2019. 不同硫酸钾用量对植烟土壤细菌群落的影响[J]. 中国烟草科学, (1): 33-40. (Song X P, Song W J, Lu W L, et al. 2019. Effects of different potassium sulfate levels on bacterial community of tobacco planting soil[J]. Chinese Tobacco Science, (1): 33-40.) [14] 宋兆齐, 王莉, 刘秀花, 等. 2015. 云南和西藏四处热泉中的厚壁菌门多样性[J]. 生物技术, 25(5): 481-486, 436. (Song Z Q, Wang L, Liu X H, et al.2015. Diversities of Firmicutes in four hot springs in Yunnan and Tibet[J]. Biotechnology, 25(5): 481-486, 436.) [15] 孙倩, 吴宏亮, 陈阜, 等. 2020. 基于高通量测序的几种不同作物根际土壤细菌群落结构和多样性分析[J]. 农业生物技术学报, 28(8): 164-172. (Sun Q, Wu H L, Chen F, et al.2020. Analysis of bacterial community structure and diversity in rhizosphere soil of several different crops based on high-throughput sequencing[J]. Journal of Agricultural Biotechnology, 28(8): 164-172.) [16] 王桂芳. 2009. 沼液配施钾肥对苹果园土壤酶活性和土壤微生物数量及果实品质的影响[D]. 硕士学位论文, 西北农林科技大学, 导师: 李丙智, pp. 20-22. (Wang G F.2009. Effect of application of biogas slurry with potassium on soil enzyme activities, soil microorganism and red fuji fruit quality at apple orchards[D]. Thesis for M.S., Northwest Agricultural and Forestry University, Suppervisor: Li B Z, pp. 20-22.) [17] 王敏锋, 陈硕, 朱謇, 等. 2017. 模拟淋溶条件下沼液对菜田土壤磷素淋洗及其形态的影响[J]. 农业资源与环境学报, 34(4): 368-375. (Wang M F, Chen S, Zhu J, et al.2017. Effects of application of biogas slurry on the form and mobility of soil phosphorus in vegetable greenhouse field[J]. Journal of Agricultural Resources and Environment, 34(4): 368-375.) [18] 汪茜, 冯重阳, 张金莲, 等. 2018. 甘蔗根际土壤AM真菌群落季节性变化研究[J]. 热带作物学报, 39(9): 1689-1694. (Wang Q, Feng C Y, Zhang J L, et al.2018. Seasonal variation of AM fungal community in rhizosphere of sugarcane[J]. Chinese Journal of Tropical Crops, 39(9): 1689-1694.) [19] 王毅琪, 韩文彪, 赵玉柱, 等. 2016. 沼液对土壤理化性质的影响[J]. 安徽农业科学, 44(1): 193-195. (Wang Y Q, Han W B, Zhao Y Z, et al.2016. Effects of biogas slurry on soil physical and chemical properties[J]. Journal of Anhui Agricultural Sciences, 44(1): 193-195.) [20] 王越, 罗雪媛, 李永春, 等. 2020. 毛竹与阔叶林凋落物添加对土壤细菌群落的影响[J]. 农业生物技术学报, 28(6): 951-962. (Wang Y, Luo X Y, Li Y C, et al.2020. Effects of litter addition of Moso bamboo (Phyllostachys edulis) and broadleaf forest on soil bacterial community[J]. Journal of Agricultural Biotechnology, 28(6): 951-962.) [21] 曾锦, 徐锐, 梁高飞, 等. 2018. 畜禽养殖废弃物资源化利用技术及推广模式研究进展[J]. 畜牧与饲料科学, 39(8): 56-63. (Zeng J, Xu R, Liang G F, et al.2018. Research advances on the resource recycling technology and extension model of livestock and poultry[J]. Animal Husbandry and Feed Science, 39(8): 56-63.) [22] 张维国, 邸攀攀, 易能, 等. 2018. 连续降雨后太湖流域典型农田土地利用方式下土壤至入湖河流水体细菌群落的变化[J]. 农业资源与环境学报, 35(1): 48-57. (Zhang W G, Di P P, Yi N, et al.2018. Variations of bacterial community along farmland-river continuum after continuous rainfall in Taihu Lake Basin, China[J]. Journal of Agricultural Resources and Environment, 35(1): 48-57.) [23] 张无敌, 尹芳, 徐锐, 等. 2009. 沼液对土壤生物学性质的影响[J]. 湖北农业科学, 48(10): 2403-2407. (Zhang W D, Yin F, Xu R, et al.2009. Effect of biogas slurry on biological properties of soil[J]. Journal of Hubei Agricultural Science, 48(10): 2403-2407.) [24] 赵兴青, 杨柳燕, 于振洋, 等. 2007. 太湖沉积物理化性质及营养盐的时空变化[J]. 湖泊科学, 19(6): 698-704. (Zhao X Q, Yang L Y, Yu Z Y, et al.2007. Temporal and spatial distribution of physicochemical characteristics and nutrients in sediments of Lake Taihu[J]. Journal of Lake Sciences, 19(6): 698-704.) [25] 钟珍梅, 宋亚娜, 黄秀声, 等. 2016. 沼液对狼尾草地土壤微生物群落的影响[J]. 草地学报, 24(1): 54-60. (Zhong Z M, Song Y N, Huang X S, et al.2016. Effects of biogas slurry application on the soil microorganisms of P.americanum×P.purpureum grassland[J]. Acta Agrestia Sinica, 24(1): 54-60.) [26] 周桔, 雷霆. 2007. 土壤微生物多样性影响因素及研究方法的现状与展望[J]. 生物多样性, 15(3): 306-311. (Zhou J, Lei T.2007. Review and prospects on methodology and affecting factors of soil microbial diversity[J]. Biodiversity Science, 15(3): 306-311.) [27] 朱金山, 张慧, 马连杰, 等. 2018. 不同沼灌年限稻田土壤微生物群落分析[J]. 环境科学, 39(5): 2400-2411. (Zhu J S, Zhang H, Ma L J, et al.2018. Diversity of the microbial community in rice paddy soil with biogas slurry irrigation analyzed by Illumina sequencing technology[J]. Environmental Science, 39(5): 2400-2411.) [28] Allison S D, Martiny J B H.2008. Resistance, resilience, and redundancy in microbial communities[J]. Proceedings of the National Academy of Sciences of the USA, 105(1suppl.1): 11512-11519. [29] Bachmann S, Gropp M, Eichler-Loebermann B.2014. Phosphorus availability and soil microbial activity in a 3 year field experiment amended with digested dairy slurry[J]. Biomass & Bioenergy, 70(nov.): 429-439. [30] Chen R R, Blagodatskaya E, Senbayram M, et al.2012. Decomposition of biogas residues in soil and their effects on microbial growth kinetics and enzyme activities[J]. Biomass & Bioenergy, 45: 221-229. [31] Chen Z M, Wang Q, Ma J W, et al.2020. Soil microbial activity and community composition as influenced by application of pig biogas slurry in paddy field in southeast China[J]. Paddy and Water Environment, 18(1): 15-25. [32] Du C, Xu C Y, Jian J S, et al.2018. Seasonal dynamics of bacterial communities in a Betula albosinensis forest[J]. European Journal of Soil Science, 69: 1-9. [33] Farag I F, Davis J P, Youssef N H, et al.2014. Global patterns of abundance, diversity and community structure of the aminicenantes (candidate phylum OP8)[J]. PLOS ONE, 9(3): e92139. [34] Feng G D, Yang S Z, Li H P, et al.2016. Massilia putida sp. nov., a dimethyl disulfide-producing bacterium isolated from wolfram mine tailing[J]. International Journal of Systematic and Evolutionary Microbiology, 66(1): 50-55. [35] Fierer N, Lauber C L, Ramirez K S, et al.2012. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. The ISME Journal, 6: 1007-1017. [36] Fierer N, Bradford M A, Jackson R B.2007. Toward an ecological classification of soil bacteria[J]. Ecology, 88(6): 1354-1364. [37] Guo H H, Nasir M, Lv J L, et al.2017. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing[J]. Ecotoxicology and Environmental Safety, 144: 300-306. [38] Lado M, Paz A, Benhur M.2004. Organic matter and aggregate size interactions in infiltration, seal formation, and soil loss[J]. Soil Science Society of America Journal, 27(68): 935-942. [39] Lauber C L, Hamady M, Knight R, et al.2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale[J]. Applied and Environmental Microbiology, 75(15): 5111-5120. [40] Lee H, Kim D U, Park S, et al.2017. Massilia chloroacetimidivorans sp. nov., a chloroacetamide herbicide-degrading bacterium isolated from soil[J]. Antonie Van Leeuwenhoek, 110(6): 751-758. [41] Liu H Y, Huang X, Tan W F, et al.2020. High manure load reduces bacterial diversity and network complexity in a paddy soil under crop rotations[J]. Soil Ecology Letters, 2: 104-119. [42] Lou J, Gu H P, Wang H Z, et al.2016. Complete genome sequence of Massilia sp. WG5, an efficient phenanthrene-degrading bacterium from soil[J]. Journal of Biotechnology, 218: 49-50. [43] Ryckeboer J R, Mergaert J, Vaes K, et al.2003. A survey of bacteria and fungi occurring during composting and self-heating processes[J]. Annals of Microbiology, 53(4): 349-410. [44] Voriskova J, Brabcová V, Cajthaml T, et al.2013. Seasonal dynamics of fungal communities in a temperate oak forest soil[J]. New Phytologist, 201(1): 269-278. [45] Wentzel S, Schmidt R, Piepho H P, et al.2015. Response of soil fertility indices to long-term application of biogas and raw slurry under organic farming[J]. Applied Soil Ecology, 96: 99-107. [46] Xu M, Xian Y, Wu J, et al.2019. Effect of biogas slurry addition on soil properties, yields, and bacterial composition in the rice-rape rotation ecosystem over 3 years[J]. Journal of Soil & Sediments, 19(5): 2534-2542. [47] Zheng B X, Bi Q F, Hao X L, et al.2017. Massilia phosphatilytica sp. nov., a phosphate solubilizing bacteria isolated from a long-term fertilized soil[J]. International Journal of Systematic and Evolutionary Microbiology, 67(8): 2514-2519. [48] Zhou X G, Wang Z L, Jia H T, et al.2018. Continuously monocropped jerusalem artichoke changed soil bacterial community composition and ammonia-oxidizing and denitrifying bacteria abundances[J]. Frontiers in Microbiology, 9: 705. [49] Zirkler D, Peters A, Kaupenjohann M.2014. Elemental composition of biogas residues: Variability and alteration during anaerobic digestion[J]. Biomass & Bioenergy, 67: 89-98.