Study on Phosphorus Solubilization Characteristics of Talaromyces sp. WR1-4 in Soybean (Glycine max) Rhizosphere
REN Qing-Xin1, WANG Ji-Hua1,*, ZENG Qi1, ZHANG Bi-Xian2, LIU Xiu-Lin2
1 School of Life Science and Technology, Harbin Normal University, Harbin 150025, China; 2 Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
Abstract:Phosphorus solibilizating fungus can convert the potentially ineffective phosphorus into available phosphorus in the soil, which is an effective way to alleviate the phenomenon of soil phosphorus deficiency and increase the utilization rate of phosphorus fertilizer. The strain WR1-4 (Talaromyces sp.) was screened from the rhizosphere soil of soybean (Glycine max) in preliminary work. In order to clarify its phosphorus solubility and acid production, the phosphate solubilizing ability of strain WR1-4 was measured by plating method and broth method in present study; the molybdenum antimony anti colorimetric method was used to detect the phosphorus solubilizing characteristics of strain WR1-4 under different conditions of insoluble phosphorus, carbon and nitrogen sources; HPLC was used to detect the organic acids produced by WR1-4. The results showed that WR1-4 had different ability to dissolve 5 insoluble phosphates (calcium phosphate, zinc phosphate, aluminum phosphate, phosphate rock powder, iron phosphate), and the effective phosphorus increments were 693.07, 613.47, 260.14, 137.84 and 386.33 mg/L, respectively. Strain WR1-4 used 6 carbon sources in the order of glucose, sucrose, maltose, starch, lactose and cellulose. As to different nitrogen sources, strain WR1-4 had strongest phosphate solubilizing capacity under the condition of ammonium sulfate, and least phosphate solubilizing ability under the condition of potassium nitrate. Strain WR1-4 could produce 8 kinds of organic acids, including oxalic acid, lactic acid, citric acid, malic acid, acetic acid, fumaric acid, tartaric acid, and maleic acid. According to Pearson analysis, the correlation between the increase of available phosphorus and organic acid was positively correlated. At the same time, while strain WR1-4 was in the stage of phosphate solubilization, the pH of the environment decreased. Above results indicate that strain WR1-4 had a strong ability to dissolve phosphorus and a wide range of growth and metabolism conditions, which makes it has potential application prospects in microbial fertilizer development and agricultural production.
[1] 敖雪, 孔令剑, 朱倩, 等. 2015. 磷素对不同磷效率基因型大豆根系养分吸收特性的影响[J]. 大豆科学, 34(04): 653-660. (Ao X, Kong L J, Zhu Q, et al.2015. Effect of phosphorus on nutrient absorption characteristics of roots in soybean with different phosphorus efficiencies[J]. Soybean Science, 34(04): 653-660.) [2] 陈莎莎, 孙敏, 王文超, 等. 2018. 溶磷真菌固体发酵菌肥对玉米生长及根际细菌群落结构的影响[J]. 农业环境科学学报, 37(9): 1910-1917. (Chen S S, Sun M, Wang W C, et al.2018. Effects of solid biofertilizers of phosphate-solubilizing fungi on maize growth and the bacterial community structure in rhizospheres[J]. Journal of Agro-Environment Science, 37(9): 1910-1917.) [3] 陈哲, 吴敏娜, 秦红灵, 等. 2009. 土壤微生物溶磷分子机理研究进展[J]. 土壤学报, 46(05): 925-931. (Chen Z, Wu M N, Qin H L, et al.2009. Advances in research on molecular mechanisms of phosphate-solubilizing microorganisms in soil[J]. Acta Pedologica Sinica, 46(05): 925-931.) [4] 范丙全, 金继运, 葛诚. 2002. 溶磷草酸青霉菌筛选及其溶磷效果的初步研究[J]. 中国农业科学, (05): 525-530. (Fan B Q, Jin J Y , Ge C. 2002. Isolation of Penicillium oxalicum and its effect on solubilization of insoluble phosphate under different conditions[J]. Scientia Agricultura Sinica, (05): 525-530.) [5] 范延辉, 王君, 刘雪红, 等. 2015. 一株耐盐解磷真菌的筛选、鉴定及其发酵优化[J]. 土壤通报, 46(02): 362-367. (Fan Y H, Wang J, Liu X H, et al.2015. Isolation, identification and fermentation optimization of a halotolerant strain with phosphate-solubilizing activity[J]. Chinese Journal of Soil Science, 46(02): 362-367.) [6] 郭渊, 李韵雅, 江威, 等. 2018. 一株高效解磷肠膜明串珠菌的分离鉴定及解磷能力研究[J]. 微生物学通报, 45(10): 2131-2141. (Guo Y, LI Y Y, Jiang W, et al.2018. Isolation and identification of a phosphate solubilizing bacterium Leuconostoc mesenteroides and its ability to dissolve phosphorus[J]. Microbiology China, 45(10): 2131-2141.) [7] 何迪, 耿丽平, 郭佳, 等. 2020. 草酸青霉菌HB1溶磷能力及作用机制[J]. 农业工程学报, 36(02): 255-265. (He D, Geng L P, Guo J, et al.2020. Ability and mechanism of Penicillium oxalicum HB1 solubilizing phosphates[J]. Transactions of the Chinese Society of Agricultural Engineering, 36(02): 255-265.) [8] 江红梅, 殷中伟, 史发超, 等. 2018a. 一株耐盐溶磷真菌的筛选、鉴定及其生物肥料的应用效果[J]. 植物营养与肥料学报, 24(03): 728-742. (Jing H M, Yin Z W, Shi F C, et al.2018a. Isolation and functional evaluation of phosphate-solubilizing fungi with salt-tolerant characteristics[J]. Journal of Plant Nutrition and Fertilizers, 24(03): 728-742.) [9] 江红梅, 殷中伟, 史发超, 等. 2018b. 一株耐盐日本曲霉的筛选及其溶磷促生作用[J]. 微生物学报, 58(05): 862-881. (Jing H M, Yin Z W, Shi F C, et al.2018b. Isolation, identification of a salt-tolerant, phosphate-solubilizing and crop-growth promoting Aspergillus japonicas[J]. Acta Microbiologica Sinica, 58(05): 862-881.) [10] 孔令剑, 朱倩, 单玉姿, 等. 2018. 蔗糖对低磷胁迫条件下大豆苗期根系形态和物质积累的影响[J]. 大豆科学, 37(02): 239-245. (Kong L J, Zhu Q, Shan Y Z, et al.2018. Effect of sucrose on root morphology and substance accumulation at soybean seedling stage under low phosphorus stress[J]. Soybean Science, 37(02): 239-245.) [11] 路亚, 王春晓, 于天一, 等. 2020. 土壤施磷与叶面追肥互作对花生根系形态、结瘤特性及氮代谢的影响[J]. 作物学报, 46(03): 432-439. (Lu Y, Wang C X, Yu T Y, et al.2020. Effects of interaction of phosphorus (P) application in soil and leaves on root, nodule characteristics and nitrogen (N) metabolism in peanut[J]. Acta Agronomica Sinica, 46(03): 432-439.) [12] 刘胜亮, 朱舒亮, 李静, 等. 2017. 不同有机酸对磷酸三钙溶解能力的研究[J]. 江西农业大学学报, 39(5): 1010-1016. (Liu S L, Zhu S L, Li J, et al.2017. A study on the ability of different organic acids to dissolve tricalcium phosphate[J]. Acta Agriculturae Universitatis Jiangxiensis, 39(5): 1010-1016.) [13] 刘文干, 曹慧, 樊建波, 等. 2012. 一株红壤花生根际溶磷真菌的分离、鉴定及溶磷能力的研究[J]. 土壤学报, 49(05): 988-995. (Liu W G, Cao H, Fan J B, et al.2012. Isolation, identification and characterization of a phosphate-solubilizing strain of fungi in rhizosphere of peanuts growing in red soil[J]. Acta Pedologica Sinica, 49(05): 988-995.) [14] 刘玉凤, 马丽娟, 张婷婷, 等. 2019. 红花根际溶磷菌的筛选与培养条件优化[J]. 江苏农业科学, 47(18): 287-291. (Liu Y F, Ma L J, Zhang T T, et al.2019. Identification and culture conditions optimization of phosphate-solubilizing bacteria in rhizosphere[J]. Jiangsu Agricultural Sciences, 47(18): 287-291.) [15] 李豆豆, 尚双华, 韩巍, 等. 2019. 一株高效解磷真菌新菌株的筛选鉴定及解磷特性[J]. 应用生态学报, 30(07): 2384-2392. (Li D D, Shang S H, Han W, et al.2019. Screening, identification, and phosphate solubilizing characteristics of a new efficient phosphate solubilizing fungus[J]. Chinese Journal of Applied Ecology, 30(07): 2384-2392.) [16] 李文, 戴玲, 王陶, 等. 2020. 不动杆菌JL-1菌株的解磷机理[J]. 微生物学通报, 47(05): 1377-1387. (Li W, Dai L, Wang T, et al.2020. Research on phosphate solubilization by Acinetobacter indicus JL-1[J]. Microbiology China, 47(05): 1377-1387.) [17] 李小冬, 王小利, 陈锡, 等. 2017. 转录组解析白三叶根际溶磷菌株RW8的解磷机制[J]. 草业学报, 26(08): 168-179. (Li X D, Wang X L, Chen X, et al.2017. Transcriptome profiling analysis of the phosphate-solubilizing mechanism of the white clover rhizosphere strain RW8[J]. Acta Prataculturae Sinica, 26(08): 168-179.) [18] 乔志伟. 2019. 黄壤溶磷青霉菌的筛选及培养条件优化[J]. 河南农业科学, 48(05): 56-61. (Qiao Z W.2019. Screening and optimization of culture conditions for phosphate solubilizing Penicillium in yellow soil[J]. Journal of Henan Agricultural Sciences, 48(05): 56-61.) [19] 乔志伟. 2020. 黄壤假单胞菌溶磷特性及对pH缓冲的响应[J]. 山西农业大学学报(自然科学版), 40(01): 116-121. (Qiao Z W.2020. Phosphorus solubility and responseto pH buffer of Pseudomonas aeruginosa in yellow soil[J]. Journal of Shanxi Argicultural University (Natural science edition), 40(01): 116-121.) [20] 乔志伟, 洪坚平, 谢英荷, 等. 2013. 一株石灰性土壤强溶磷真菌的分离鉴定及溶磷特性[J]. 应用与环境生物学报, 19(05): 873-877. (Qiao Z W, Hong J P, Xie Y H, et al.2013. Screening, identification and dissolving characteristics of a strong phosphorus solubilizing fungi in calcareous soil[J]. Chinese Journal Applied and Environmental Biology, 19(05): 873-877.) [21] 任氢欣. 2021. 大豆根际溶磷真菌的筛选、鉴定及溶磷机制研究[D]. 硕士学位论文, 哈尔滨师范大学, 导师: 王继华, pp. 16-25. (Ren Q X.2021. Screening identification and mechanism of phosphate solubilizing fungus in soybean rhizosphere[D]. Thesis for M.S., Harbin Normal University, Suppervisor: Wang J H, pp. 16-25.) [22] 孙冉, 张素, 吴臣林, 等. 2020. 黑曲霉解磷能力的影响因素及培养条件优化[J]. 应用生态学报, 31(06): 1963-1970. (Sun R, Zhang S, Wu C L, et al.2020. Influencing factors of phosphate solubilizing capacity of Aspergillus niger and optimization of its culture condition[J]. Chinese Journal of Applied Ecology, 31(06): 1963-1970.) [23] 王俊娟, 阎爱华, 王薇, 等. 2016. 铁尾矿区油松根际溶磷泛菌D2的筛选鉴定及溶磷特性[J]. 应用生态学报, 27(11): 3705-3711. (Wang J J, Yan A H, Wang W, et al.2016. Screening, identification and phosphate-solubilizing characteristics of phosphate-solubilizing bacteria strain D2 (Pantoea sp.) in rhizosphere of Pinus tabuliformis in iron tailings yard[J]. Chinese Journal of Applied Ecology, 27(11): 3705-3711.) [24] 吴安琪, 张扬, 万松泽, 等. 2019. 一株金黄蓝状菌解磷特性及其对毛竹的促生效应[J]. 应用生态学报, 30(01): 173-179. (Wu A Q, Zhang Y, Wan S Z, et al.2019. Phosphate solubilizing characteristics of Talaromyces aurantiacus and its growth-promoting effect on Phyllostachys edulis seedlings[J]. Chinese Journal of Applied Ecology, 30(01): 173-179.) [25] 杨榕, 王敬敬, 徐松, 等. 2018. 溶磷真菌的筛选及耐盐特性分析[J]. 微生物学通报, 45(10): 2142-2151. (Yang R, Wang J J, Xu S, et al.2018. Screening, identification and salt-tolerant characteristics of phosphate-solubilizing fungi[J]. Microbiology China, 45(10): 2142-2151.) [26] 杨顺, 杨婷, 林斌, 等. 2018. 两株溶磷真菌的筛选、鉴定及溶磷效果的评价[J]. 微生物学报, 58(02): 264-273. (Yang S, Yang T, Lin B, et al.2018. Isolation and evaluation of two phosphate-dissolving fungi[J]. Acta Microbiologica Sinica, 58(02): 264-273.) [27] 曾齐, 王继华, 隋海潮, 等. 2019. 大豆根际溶磷真菌的筛选、复配及包埋固定化回用效果[J]. 分子植物育种, 17(10): 3353-3363. (Zeng Q, Wang J H, Sui H C, et al.2019. Screening, compounding and embedding immobilization effect of soybean rhizosphere phosphate solubilizing fungi[J]. Molecular Plant Breeding, 17(10): 3353-3363.) [28] 赵卫松, 郭庆港, 于稳欠, 等. 2020. 解淀粉芽胞杆菌PHODB35的溶磷特性及其对番茄的促生作用[J]. 微生物学报, 60(07): 1370-1383. (Zhao W S, Guo Q G, Yu W Q, et al.2020. Phosphate-solubilizing characteristics of Bacillus amyloliquefaciens PHODB35 and its growth-promoting effect on tomato[J]. Acta Microbiologica Sinica, 60(07): 1370-1383.) [29] 朱倩, 姚兴东, 单玉姿, 等. 2019. 生物炭对R2期大豆根系生长和氮磷吸收利用的影响[J]. 沈阳农业大学学报, 50(4): 385-391. (Zhu Q, Yao X D, Shan Y Z, et al.2019. Effects of biochar on root growth at R2 stage, and nitrogen, phosphorus uptake and utilization of soybean[J]. Journal of Shenyang Agricultural University, 50(4): 385-391.) [30] Efthymiou A, Gronlund M, Muller-Stover D S, et al.2018. Augmentation of the phosphorus fertilizer value of biochar by inoculation of wheat with selected Penicillium strains[J]. Soil Biology & Biochemistry, 116: 139-147. [31] Elias F, Delelegn W, Diriba M.2016. Phosphate solubilization potential of rhizosphere fungi isolated from plants in jimma zone, southwest ethiopia[J]. International Journal of Microbiology, 2016: 5472601. [32] Isbelia R, Louis B, Simard R R, et al.1999. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants[J]. FEMS Microbiology Ecology, (3): 281-290. [33] Jiang Y F, Tian J, Ge F.2020. New insight into carboxylic acid metabolisms and pH regulations during insoluble phosphate solubilisation process by Penicillium oxalicum PSF-4[J]. Current Microbiology, 77(12): 3. [34] Kanse O S, Whitelaw W M, Kadam T A, et al.2015. Phosphate solubilization by stress-tolerant soil fungus Talaromyces funiculosus SLS8 isolated from the neem rhizosphere[J]. Annals of Microbiology, 65(1): 85-93. [35] Li X L, Luo L J, Yang J S, et al.2015. Mechanisms for solubilization of various insoluble phosphates and activation of immobilized phosphates in different soils by an efficient and salinity-tolerant Aspergillus niger strain An2[J]. Applied Biochemistry and Biotechnology, 175(5): 2755. [36] Mendes G D O, Freitas A L M, Pereira O L, et al.2013. Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources[J]. Annals of Microbiology, 64(1): 239-249. [37] Nelofer R, Quratulain S, Muhammad N, et al.2016. Isolation of phosphorus-solubilizing fungus from soil to supplement biofertilizer[J]. Arabian Journal for Science and Engineering, 41(6): 2131-2138. [38] Reddy M S, Kumar S, Babita K, et al.2002. Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger[J]. Bioresource Technology, 84(2): 187-189. [39] Rinu K, Malviya M K, Sati P, et al.2013. Response of cold-tolerant Aspergillus spp. to solubilization of Fe and Al phosphate in presence of different nutritional sources[J]. ISRN Soil Science, (4): 135-143. [40] Yin Z W, Shi F C, Hongmei J.2015. Phosphate solubilization and promotion of maize growth by Penicillium oxalicum P4 and Aspergillus niger P85 in a calcareous soil[J]. Canadian Journal of Microbiology, 61(12): 913-923. [41] Zhang Y, Chen F S, Wu X Q, et al.2018. Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments[J]. PLOS ONE, 13(7): e0199625.