Genome-wide Association Study of Maize (Zea mays) Kernel Test Weight Under Different Planting Densities
YUAN Fan1,*, ZHENG Yun-Xiao1,*, LIU Qiang1, HUANG Ya-Qun1, LIU Han2, ZHAO Yong-Feng1, JIA Xiao-Yan1, ZHU Li-Ying1, CHEN Jing-Tang1,3, GUO Jin-Jie1,**
1 Hebei Sub-center of National Maize Improvement Center/Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding 071000, China; 2 State Key Laboratory of Agrobiotechnology/National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China; 3 College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
Abstract:Maize is the main grain-forage crop in China, and the kernel test weight (KTW) is an index to evaluate the quality grade of maize. With the breeding and popularization of high-density-tolerance maize varieties increasing, the effect of planting density on maize quality was began to study. In this study, 248 maize inbred lines with rich genetic diversity were used as association population, genome-wide association studies (GWAS) was used to explore KTW trait in multiple environments with different planting densities. Using 830 57 SNP markers distributed in the whole genome, the effect of planting density on KTW trait was explored and find out the related loci and candidate genes for controlling KTW trait. The results showed that planting density had a significant effect on KTW trait. The inbred lines 'XF134', '4676A', '811A', 'Ji 4112', etc. were less affected by the density and could maintain higher KTW, which was suitable for planting in high density environment. This study identified 14 significant SNPs, which were located on chromosomes 1, 3, 4, 5, 6, 7 and 10, respectively. And the phenotypic variation explained (PVE) by single locus ranged from 1.84% to 30.91%. There were 72 candidate genes found by searching the candidate genes in the range of 120 kb upstream and downstream of SNP. The results of enrichment analysis of candidate genes were mainly involved in 7 biological processes, 8 cellular components and 6 molecular functions. Seven candidate genes GRMZM2G079263, GRMZM2G079617, GRMZM2G403609, GRMZM2G180659, GRMZM2G160840, GRMZM2G104254 and GRMZM2G057281 may be related to KTW. These genes were involved in the regulation of endosperm development, photosynthesis and resistance to adversity. This study provides help for further explore the genetic principle and mechanism of KTW and molecular assisted selective breeding.
[1] 车海先, 李海玉. 2011. 玉米容重影响因素浅析[J]. 粮食与食品工业, 18: 56-61. (Che H X, Li H Y.2011. Analysis of influence factors on maize test weight[J]. Cereal and Food Industry, 18: 56-61.) [2] 杜宇茜, 杨莎, 祝丽英, 等. 2018. 两种密度条件下玉米雄穗分枝数全基因组关联分析[J]. 分子植物育种, 16(18): 5970-5977. (Du Y Q, Yang S, Zhu L Y, et al.2018. Genome-wide association analysis of tassel branch number under high and low plant densities in maize (Zea mays L.)[J]. Molecular Plant Breeding, 16(18): 5970-5977.) [3] 丰光, 刘志芳, 李妍妍, 等. 2010. 中国不同时期玉米单交种的产量变化[J]. 中国农业科学, 43(2): 277-285. (Feng G, Liu Z F, Li Y Y, et al.2010. Study on the trends in yield change of maize single cross hybrids in different periods in China[J]. Scientia Agricultura Sinica,43(2): 277-285.) [4] 高春霞. 2001. 对玉米容重检验方法的初步探讨[J]. 黑龙江农业科学, (5): 44. (Gao C X. 2001. Preliminary discussion on corn capacity test method[J]. Heilongjiang Agricultural Science, (5): 44.) [5] 高世杰. 2017. 我国玉米生产现状及发展趋势[J]. 农民致富之友, (22): 77. (Gao S J. 2017. Current situation and development trend of maize production in China[J]. Friends of Farmers, (22): 77.) [6] 郭晋杰, 张静, 陈景堂. 2018. 基于高密度遗传连锁图谱定位玉米籽粒容重QTL[J]. 玉米科学, (06): 27-32. (Guo J J, Zhang J, Chen J T. 2018. High-density genetic linkage map construction and QTL mapping for kernel test weight and related traits in maize[J]. Journal of Maize Sciences, (06): 27-32.) [7] 韩新桐. 2018. 玉米籽粒容重相关性状及一般配合力QTL定位[D]. 硕士学位论文, 河北农业大学, 导师: 陈景堂, 郭晋杰, pp. 40-43. (Han X T.2018. QTL mapping for kernel test weight related traits and general combining ability of maize[D]. Thesis for M.S., Hebei Agricultural University, Supervisor: Chen J T, Guo J J, pp. 40-43.) [8] 胡龄予, 伊霖晟, 刘冬雪, 等. 2020. 蒺藜苜蓿多聚半乳糖醛酸酶基因家族的全基因组分析[J]. 生物信息学, 18(01): 31-38. (Hu L Y, Yi L S, Liu D X, et al.2020. Genome-wide analysis of polygalacturonase gene family in Medicago truncatula[J]. Chinese Journal of Bioinformatics, 18(01): 31-38.) [9] 李文兰, 李文才, 孙琦, 等. 2020. 生长素响应及转运信号在玉米不同节位腋芽发育过程中的分布模式分析[J]. 玉米科学, 28(04): 22-25. (Li W L, Li W C, Sun Q, et al.2020. Distribution pattern analysis of auxin response and transport signal in the development of axillary buds at different nodes of maize[J]. Journal of Maize Sciences, 28(04): 22-25.) [10] 李真, 刘文童, 杨硕, 等. 2019.玉米花期性状的全基因组关联分析[J]. 分子植物育种, (03): 37-45. (Li Z, Liu W T, Yang S, et al.2019. Genome-wide association study of flowering time related traits in maize (Zea mays L.)[J]. Molecular Plant Breeding, (03): 37-45.) [11] 刘丹. 2014. 小麦抗逆相关基因TaPP2AbB”-α/γ的克隆及功能分析[D]. 硕士学位论文, 中国农业科学院, 导师: 景蕊莲, pp. 21-25. (Liu D.2014. Cloning and functional analysis of abiotic stress-response gene TaPP2AbB”-α/γ from wheat (Triticum aestivum L.)[D]. Thesis for M.S., Chinese Academy of Agricultural Sciences, Supervisor: Jing R L, pp. 21-25.) [12] 刘武仁, 冯艳春, 郑金玉, 等. 2004. 提高玉米商品品质的关键技术研究[J]. 吉林农业科学, 29(2): 5-8. (Liu W R, Feng Y C, Zheng J Y, et al.2004. Study on key technologies of improving corn commodity quality[J]. Journal of Jilin Agricultural Sciences, 29(2): 5-8.) [13] 刘震, 赵丰舟, 崔佳, 等. 2018. 玉米弯孢叶斑病菌PG基因家族鉴定与表达分析[J]. 玉米科学, 26(04): 166-172. (Liu Z, Zhao F Z, Cui J, et al.2018. Identification and expression analysis of PG gene family of curvularia leaf spot[J]. Journal of Maize Sciences, 26(04): 166-172.) [14] 牛义岭, 姜秀明, 许向阳. 2016. 植物转录因子MYB基因家族的研究进展[J]. 分子植物育种, 14(8): 2050-2059. (Niu Y L, Jiang X M, Xu X Y.2016. Reaserch advances on transcription factor MYB gene family in plant[J]. Molecular Plant Breeding, 14(8): 2050-2059.) [15] 彭勃. 2010. 玉米籽粒产量及其相关性状遗传基础的研究[D]. 博士学位论文, 中国农业科学院, 导师: 黎裕, pp. 109-111. (Peng B.2010. Study on the genetic basis of grain yield and yield-related traits in maize (Zea mays L.)[D]. Thesis for Ph.D., Chinese Academy of Agricultural Sciences, Supervisor: Li Y, pp. 109-111.) [16] 任安然, 武丽芬, 关红辉, 等. 2017.不同种植密度下玉米茎秆纤维性状和抗倒性相关分析[J]. 植物遗传资源学报, 18(4): 653-664. (Ren A R, Wu L F, Guan H H, et al.2017. Stalk fiber related traits and lodging resistance correlation analysis under different planting density in maize[J]. Journal of Plant Genetic Resources,18(4): 653-664.) [17] 王楷, 王克如, 王永宏, 等. 2012.密度对玉米产量(>15000 Kg/hm-2)及其产量构成因子的影响[J]. 中国农业科学, 45(16): 3437-3445. (Wang K, Wang K R, Wang Y H, et al.2012. Effects of density on maize yield and yield components[J]. Scientia Agricultura Sinica, 45(16): 3437-3445.) [18] 王霖, 冯维营, 黄玲, 等. 2014. 小麦容重QTL定位[J]. 山东农业科学, 46(4): 24-27. (Wang L, Feng W Y, Huang L, et al.2014. QTL mapping for wheat test weight[J]. Shandong Agricultural Sciences, 46(4): 24-27.) [19] 王猛, 曹福祥, 龙绛雪. 2010. 马尾松捕光叶绿素a/b结合蛋白基因cab-Pm1的克隆与原核表达[J]. 林业科学, 46(9): 172-177. (Wang M, Cao F X, Long J X.2010. Cloning and prokaryotic expression of the light harvesting chlorophy Ⅱ a/b binding protein gene from pinus massoniana[J]. Scientia Silvae Sinicae, 46(9): 172-177.) [20] 王庆成, 刘霞, 李宗新, 等. 2008. 种植密度对玉米种皮形态建成及胚乳淀粉粒发育的影响[J]. 中国农业科学, 41: 2506-2512. (Wang Q C, Liu X, Li Z X, et al.2008. Effect of planting densities on morphogenesis of seed capsule and development of starch granule in maize endosperm[J]. Scientia Agricultura Sinica, 41: 2506-2512.) [21] 韦如俊. 2016. 玉米籽粒容重相关性状QTL定位[D]. 硕士学位论文, 四川农业大学, 导师: 荣延昭, 兰海, pp. 32-35. (Wei R J.2016. QTL mapping of grain test weight related traits in maize[D]. Thesis for M.S., Sichuan Agriculture University, Supervisor: Rong Y Z, Lan H, pp. 32-35.) [22] 吴春胜, 贾世芳, 王成己, 等. 2004.高蛋白玉米, 高油玉米与普通玉米品质的对比研究[J]. 玉米科学, 12(1): 57-60. (Wu C S, Jia S F, Wang C J, et al.2004. A comparison of quality among high-protein corn, high-oil corn and common corn[J]. Journal of Maize Sciences, 12(1): 57-60.) [23] 徐富贤, 熊洪, 朱永川, 等. 2005. 杂交中稻源库比对籽粒充实的影响及其高产组合的源库特征[J]. 中国农业科学, (02): 265-271. (Xu F X, Xiong H, Zhu Y C, et al. 2005. Effect of source-sink ratio on grain filling and the source-sink characteristics of high yield varieties of mid-season hybrid rice[J]. Scientia Agricultura Sinica, (02): 265-271.) [24] 许理文, 段民孝, 田红丽, 等. 2015. 基于SNP标记的玉米容重QTL分析[J]. 玉米科学, 23(5): 21-25. (Xu L W, Duan M X, Tian H L, et al.2015. QTL identification for test weight based on SNP mapping in maize[J]. Journal of Maize Sciences, 23(5): 21-25.) [25] 张静, 王彩红, 赵永锋, 等. 2016. 玉米种质资源子粒容重和品质性状差异分析[J]. 植物遗传资源学报, 17(5): 832-839. (Zhang J, Wang C H, Zhao Y F, et al.2016. Difference analysis of kernel test weight and nutritional quality traits in maize (Zea mays L.) germplasm resources[J]. Journal of Plant Genetic Resources, 17(5): 832-839.) [26] 张静. 2016. 玉米籽粒容重及相关性状QTL定位[D]. 硕士学位论文, 河北农业大学, 导师: 陈景堂, pp. 22-28,37. (Zhang J.2016. QTL mapping of kernel test weight and its related traits of maize[D]. Thesis for M.S., Hebei Agricultural University, Supervisor: Chen J T, pp. 22-28, 37.) [27] 张丽, 董树亭, 刘存辉, 等. 2007. 玉米籽粒容重与产量和品质的相关分析[J]. 中国农业科学, 40(2): 405-411. (Zhang L, Dong S T, Liu C H, et al.2007. Correlation analysis on maize test weight, yield and quality[J]. Scientia Agricultura Sinica, 40(2): 405-411.) [28] 郑立飞, 景蔚蔚, 冯浩, 等. 2018. 不同区划小麦产量因素对籽粒容重影响的通径分析[J]. 生物数学学报, 33(1): 65-76. (Zheng L F, Jing W W, Feng H, et al.2018. Path anaylysis for effect of different district wheat yield factors on bulk density[J]. Journal of Biomathematics, 33(1): 65-76.) [29] 祝传书, 武莹, 李威, 等. 2012. 水稻转录因子JAMYB和ERF3的克隆及遗传转化[J]. 西北植物学报, 32(10): 1935-1941. (Zhu C S, Wu Y, Li W, et al.2012. Cloning and genetic transformation of transcription factor JAMYB and ERF3 in rice[J]. Acta Botanica Boreali-Occidentalia Sinica, 32(10): 1935-1941.) [30] Babu Y, Musielak T, Henschen A, et al.2013. Suspensor length determines developmental progression of the embryo in Arabidopsis[J]. Plant Physiology, 162(3): 1448-1458. [31] Beavis W D, Smith O S, Grant D, et al.1994. Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize[J]. Crop Science, 34: 882-896. [32] Chang C C, Chow C C, Tellier L C, et al.2015. Second-generation PLINK: Rising to the challenge of larger and richer datasets[J]. Gigascience, 4(1): 7. [33] Choi J, Eom S, Shin K, et al.2019. Identification of lysine histidine transporter 2 as a 1-aminocyclopropane carboxylic acid transporter in Arabidopsis thaliana by transgenic complementation approach[J]. Frontiers in Plant Science, 10: 1092. [34] Coreteam R.2015. R: A language and environment for statistical computing[J]. Computing, 14: 12-21. [35] Ding J Q, Ma J L, Zhang C R, et al.2011. QTL mapping for test weight by using F2:3 population in maize[J]. Genet, 90: 75-80. [36] Elshire R J, Glaubitz J C, Sun Q, et al.2011.A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species[J]. PLOS ONE, 6(5): e19379. [37] Grassini P, Thorburn J, Burr C, et al.2011. High-yield irrigated maize in the Western US corn belt: I. On-farm yield, yield potential, and impact of agronomic practices[J]. Field Crops Research, 120(1): 142-150. [38] Gu Y, Wang Z, Yang Z.2004. ROP/RAC GTPase: An old new master regulator for plant signaling[J]. Current Opinion in Plant Biology, 7(5): 527-536. [39] Hadfield K A, Bennett A B.1998. Polygalacturonases: Many genes in search of a function[J]. Plant Physiology, 117:337-343. [40] Hill W.G., Weir B.S.1988. Variances and covariances of squared linkage disequilibria in finite populations[J]. Theoretical Population Biology, 33(1): 54-78. [41] Hwang J U, Vernoud V, Szumlanski A.2008.A tip-localized Rho GAP controls cell polarity by globally inhibiting Rho GTPase at the cell apex[J]. Current Biology, 18(24): 1907-1916. [42] Knapp S J, Stroup W W, Ross W M.1985.Exact confidence intervals for heritability on a progeny mean basis[J], Crop Science, 25(1): 192-194. [43] Lauer J.1999. Corn hybrid and planting date influence rate of kernel dry down[J]. Field Crops, 28: 47-52. [44] Liao J G, Chen Z Y, Wei X M, et al.2020. Identification of pollen and pistil polygalacturonases in Nicotiana tabacum and their function in interspecific stigma compatibility[J]. Plant Reproduction, 33: 173-190. [45] Markovič O, Janeček Š.2001. Pectin degrading glycoside hydrolases of family 28: Sequence-structural features[J]. Specificities and Evolution, 14(9): 615-631. [46] Marsan P A, Monfredini G, Ludwig W F, et al.1995. In an elite cross of maize a major quantitative trait locus controls one-fourth of the genetic variation for grain yield[J]. Theoretical and Applied Genetics, 90: 415-424. [47] McCartney C A, Somers D J, Humphreys D G, et al.2005. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452×'AC Domain'[J].Genome, 48(5): 870~883. [48] Mertz E T, Bates L S, Nelson O E.1964. Mutant gene that changes protein composition and increases lysine content of maize endosperm[J]. Science,145(3629): 279-280. [49] Raghvendra A S.1998. Photosythesis: A comprehensive treatise[M]. Cambridge: Cambridge University Press, 72-86. [50] Reddy R N, Madhusudhana R, Mohan S M, et al.2013. Mapping QTL for grain yield and other agronomic traits in post-rainy sorghum [Sorghum bicolor (L.) Moench][J]. Theoretical and Applied Genetics, 126: 1921~1939. [51] Reif J, Gowda M, Maurer H, et al.2011. Association mapping for quality traits in soft winter wheat[J]. Theoretical and Applied Genetics, 122: 961-970. [52] Schulthess A W, Reif J C, Ling J, et al.2017. The roles of pleiotropy and close linkage as revealed by association mapping of yield and correlated traits of wheat (Triti-cum aestivum L.)[J]. Journal of Experimental Botany, 68:4089-4101. [53] Sun X, Marza F, Ma H, et al.2010.Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat[J]. Theoretical and Applied Genetics, 120: 1041-1051. [54] Tang Y, Liu X, Wang J, et al.2016. GAPIT Version 2: An enhanced integrated tool for genomic association and prediction[J]. Plant Genome, 9(2): 1-9. [55] Tikhenko N, Alqudah A M, Borisjuk L, et al.2020. DEFECTIVE ENDOSPERM-D1 (Dee-D1) is crucial for endosperm development in hexaploid wheat[J]. Communications Biology, 3(1): 791-791. [56] Vyn T.J., Tollenaar M.1998. Changes in chemical and physical quality parameters of maize grain during three decades of yield improvement[J]. Field Crops Research, 59: 135-140. [57] Xiao C, Somerville C, Anderson C T.2014. Polygalacturonase involved in expansion1 functions in cell elongation and flower development in Arabidopsis[J]. The Plant cell, 26(3): 1018-1035. [58] Zhang H D, Jin T T, Huang Y Q, et al.2015. Identification of quantitative trait loci underlying the protein, oil and starch contents of maize in multiple environments[J]. Euphytica, 205(1): 169-183. [59] Zhang X, Mogel K J, Lor V.2019. Maize sugary enhancer1 (se1) is a gene affecting endosperm starch metabolism[J]. Proceedings of the National Academy of Sciences of the USA, 116(41): 20776-20785.