Dissecting the Genetic Basis of Stem Length and Stem Diameter in Maize (Zea mays) Using a Maize-teosinte Introgression Line Population
LI Fang1, LIU Zhi-Hua1, HU Jin-Xiang1, XIAO Ren-Jie1, ZHU Xue-Qing1, XU Ying1, DENG Min1,2, LI Rui-Lian1,2, LUO Hong-Bing1,2, HUANG Cheng1,2,3,*
1 College of Agronomy, Hunan Agricultural University, Changsha 410128, China; 2 Maize Engineering Technology Research Center of Hunan Province, Changsha 410128, China; 3 Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Changsha 410128, China
Abstract:Stem length and stem diameter, as two important traits of maize (Zea mays) stem, are closely related to maize lodging resistance, also directly or indirectly affect maize yield and plant architecture, and they are important target traits in maize breeding. This study performed a high-resolution QTL mapping for stem length and stem diameter using the multiple QTL model implemented in R/qtl, together with 19 838 SNP markers. The introgression line population of 866 lines was derived from a cross between a typical maize inbred line W22 and a typical accession of teosinte. The results showed that there were extensive genetic variations in stem length and stem diameter, which were typical quantitative traits controlled by multiple micro-effect genes. A total of 2 QTLs controlling stem length was located on chromosome 1 and 4 respectively, with the phenotypic contribution rate of 4.51% and 2.68%, and the additive effect of 0.41 and 0.39 cm, respectively. In addition, 5 QTLs controlling stem diameter were located on chromosome 1, 2, 5, 6 and 7, respectively, and the phenotypic contribution rate of each QTL varied from 2.06% to 8.32%, and the additive effect varied from 0.03 to 0.09 cm. Further analysis of candidate genes for the largest effect QTL (qSD5-1) of stem diameter, 13 possible candidate genes were screened out. This study might provide a theoretical basis for elucidating the genetic basis of stem length and stem diameter, the cloning of related genes and molecular marker-assisted selection breeding in maize.
李芳, 柳志华, 胡锦祥, 肖仁杰, 朱雪晴, 徐莹, 邓敏, 李瑞莲, 罗红兵, 黄成. 利用玉米-大刍草渗入系群体解析玉米茎长和茎粗的遗传基础[J]. 农业生物技术学报, 2021, 29(2): 216-223.
LI Fang, LIU Zhi-Hua, HU Jin-Xiang, XIAO Ren-Jie, ZHU Xue-Qing, XU Ying, DENG Min, LI Rui-Lian, LUO Hong-Bing, HUANG Cheng. Dissecting the Genetic Basis of Stem Length and Stem Diameter in Maize (Zea mays) Using a Maize-teosinte Introgression Line Population. 农业生物技术学报, 2021, 29(2): 216-223.
[1] 勾玲, 黄建军, 张宾, 等. 2007. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 33(10): 1688-1695. (Gou L, Huang J J, Zhang B, et al.2007. Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize[J]. Acta Agronomica Sinica, 33(10): 1688-1695.) [2] 黄璐, 乔江方, 刘京宝, 等. 2015. 夏玉米不同密植群体抗倒性及机收指标探讨[J]. 华北农学报, 30(2): 198-201. (Huang L, Qiao J F, Liu J B, et al.2015. Research on the relationship between maize lodging resistance and grain mechanically harvesting qualities in different planting density[J]. Acta Agriculturae Boreali-Sinica, 30(2): 198-201.) [3] 李鹏程, 魏杰, 陈敏珺, 等. 2019. 基于高密度遗传图谱的玉米抗倒伏相关性状QTL分析[J]. 分子植物育种, 17(6): 1930-1937. (Li P C, Wei J, Chen M J, et al.2019. QTL analysis for lodging resistance related traits in maize based on high density heredity mapping[J]. Molecular Plant Breeding, 17(6): 1930-1937.) [4] 李树岩, 马玮, 彭记永, 等. 2015. 大喇叭口及灌浆期倒伏对夏玉米产量损失的研究[J]. 中国农业科学, 48(19): 3952-3964. (Li S Y, Ma W, Peng J Y, et al.2015. Study on yield loss of summer maize due to lodging at the big flare stage and grain filling stage[J]. Scientia Agricultura Sinica, 48(19): 3952-3964.) [5] 任真真, 周金龙, 王小博, 等. 2016. 两种密度条件下玉米穗上节间距QTL分析[J]. 玉米科学, 24(3): 26-30. (Ren Z Z, Zhou J L, Wang X B, et al.2016. QTL mapping of internodes length above upmost ear under two planting densities in maize[J]. Journal of Maize Sciences, 24(3): 26-30.) [6] 孙世贤, 戴俊英, 顾慰连. 1989. 氮, 磷, 钾肥对玉米倒伏及其产量的影响[J]. 中国农业科学, 22(3): 28-35. (Sun S X, Dai J Y, Gu W L.1989. Effect of nitrogen, phosphate and potash fertilizers on lodging and yield in maize[J]. Scientia Agricultura Sinica, 22(3): 28-35.) [7] 汤华, 严建兵, 黄益勤, 等. 2005. 玉米5个农艺性状的QTL定位[J]. 遗传学报, 32(2): 203-209. (Tang H, Yan J B, Huang Y Q, et al.2005. QTL mapping of five agronomic traits in maize[J]. Acta Genetica Sinica, 32(2): 203-209.) [8] Doebley J.2004. The genetics of maize evolution[J]. Annual Review of Genetics, 38: 37-59. [9] Huang C, Chen Q Y, Xu G H, et al.2016. Identification and fine mapping of quantitative trait loci for the number of vascular bundle in maize stem[J]. Journal of Integrative Plant Biology, 58(1): 81-90. [10] Hufford M B, Xu X, van Heerwaarden J, et al.2012. Comparative population genomics of maize domestication and improvement[J]. Nature Genetics, 44(7): 808-811. [11] Tang J H, Teng W T, Yan J B, et al.2007. Genetic dissection of plant height by molecular markers using a population of recombinant inbred lines in maize[J]. Euphytica, 155(1): 117-124. [12] Kamara A Y, Kling J G, Menkir A, et al.2003. Association of vertical root-pulling resistance with root lodging and grain yield in selected S1 maize lines derived from a tropical low‐nitrogen population[J]. Journal of Agronomy and Crop Science, 189(3): 129-135. [13] Matsuoka Y, Vigouroux Y, Goodman M M, et al.2002. A single domestication for maize shown by multilocus microsatellite genotyping[J]. Proceedings of the National Academy of Sciences of the USA, 99(9): 6080-6084. [14] Mazaheri M, Heckwolf M, Vaillancourt B, et al.2019. Genome-wide association analysis of stalk biomass and anatomical traits in maize[J]. BMC Plant Biology, 19(1): 45-61. [15] McCouch S R, Cho Y G, Yano P E, et al.1997. Report on QTL nomenclature[J]. Rice Genetics Newsletter, 14: 11-13. [16] Novacek M J, Mason S C, Galusha T D, et al.2013. Twin rows minimally impact irrigated maize yield, morphology, and lodging[J]. Agronomy Journal, 105(1): 268-276. [17] Shannon L M.2012. The genetic architecture of maize domestication and range expansion[D]. Thesis for Ph.D., University of Wisconsin-Madison, Supervisor: Doebley J F, pp. 49. [18] Tian J G, Wang C L, Xia J L, et al.2019. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields[J]. Science, 365(6454): 658-664. [19] Wright S I, Bi I V, Schroeder S G, et al.2005. The effects of artificial selection on the maize genome[J]. Science, 308(5726): 1310-1314. [20] Zhang Y L, Liu P, Zhang X X, et al.2018. Multi-locus genome-wide association study reveals the genetic architecture of stalk lodging resistance-related traits in maize[J]. Frontiers in Plant Science, 9: 611. [21] Zhu L Y, Chen J T, Li D, et al.2013. QTL mapping for stalk related traits in maize (Zea mays L.) under different densities[J]. Journal of Integrative Agriculture, 12(2): 218-228.