Study on Plasma Metabolomics of Mongolian Horses (Equus caballus) and Hybrid Horses Before and After Endurance Exercise
WEI Rui-Yuan1, Yiboletu1, HAN Hai-Ge1, BAI Dong-Yi1, ZHAO Yi-Ping1, WANG Xi-Sheng1, REN Xiu-Juan1, MONGKE Togtokh1, MANG Lai1,*, LI Yu-Min2
1 College of Animal Science, Inner Mongolia Agricultural University/Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction/Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs/Inner Mongolia Agricultural University Equine Research Center, Hohhot 010018, China; 2 Beijing Military Region Hongshan Horse Field, Chifeng 025377, China
Abstract:Exercise metabolomics is a systems biology study that evaluates the overall metabolic response of the body to exercise training stimulation. Recent years, mainly researches have focused on the sports science in human (Homo sapiens), and there are few reports on the study of Chinese horse (Equus caballus) sports metabolomics. In this study, 1H nuclear magnetic resonance (1H-NMR) was used to analyze the characteristics of plasma metabolomics of 6 Mongolian horses and 6 hybrid horses before and after 30 km endurance exercise, and metabolic patterns and differential metabolic markers between groups were identified by partial least square discriminant analysis (PLS-DA) package of R language and one-dimensional ANOVA test of SPSS 20.0 software. There were distinct metabolic models between 2 horse groups before and after exercise. The results showed that there were significant differences in metabolic patterns between Mongolian horses and hybrid horses before and after exercise. Ten differential metabolites were identified before and after Mongolian horse exercise in whcih the concentration of glucose, ethanol, glycine, glutamine, lysine, proline, valine, and τ-methylhistidine decreased and the concentration of methanol and creatine increased. At the same time, 15 differential metabolites were identified before and after hybrid horse exercise in which the concentration of glucose, hippurate, acetate, glutamine, valine, methanol, betaine, τ-methylhistidine decreased and the concentration of lactate, glycerol, acetone, 3-hydroxybutyrate, 3-Hydroxyisobutyrate, acetoacetate and creatinine increased. The comprehensive analysis of metabolite changes showed that the energy supply mode of Mongolian horses was mainly aerobic metabolism, while the energy supply mode of hybrid horses was mainly anaerobic metabolism of phosphate source and glycolysis, as well as fatty acid ketone metabolism. Therefore, Mongolian horses had better aerobic endurance quality and explosive potential than hybrid horse, so it is feasible to breed endurance racehorses based on Mongolian horse; and glutamine and τ-methylhistidine could be developed and applied as a monitoring indicators for horse endurance training. The results of this study provides basic data for endurance training and breeding of Mongolian horses in China.
魏睿元, 依波勒图, 韩海格, 白东义, 赵一萍, 王希生, 任秀娟, 陶克涛, 芒来, 李玉民. 蒙古马与杂交马耐力运动前后的血浆代谢组学研究[J]. 农业生物技术学报, 2022, 30(11): 2141-2151.
WEI Rui-Yuan, Yiboletu, HAN Hai-Ge, BAI Dong-Yi, ZHAO Yi-Ping, WANG Xi-Sheng, REN Xiu-Juan, MONGKE Togtokh, MANG Lai, LI Yu-Min. Study on Plasma Metabolomics of Mongolian Horses (Equus caballus) and Hybrid Horses Before and After Endurance Exercise. 农业生物技术学报, 2022, 30(11): 2141-2151.
[1] 陈宣东, 凌凯. 2006. 一次性运动负荷练习对人体尿中羟脯氨酸排泄规律的影响[J]. 河南大学学报, 36(2): 76-78. (Chen X D, Ling K.2006. Research on urea HYP excretion after a high weight training[J]. Journal of Henan University, 36(2): 76-78.) [2] 范小庆, 扈金萍. 2018. 甘氨酸生理功能与代谢研究进展[J]. 国际药学研究杂志, 45(2): 102-107. (Fan X Q, Hu J P.2018. Physiological function of glycine and its role in metabolism: Research advances[J]. Journal of International Pharmaceutical Research, 45(2): 102-107.) [3] 雷志平. 2006. 运动生物化学[M]. 陕西: 陕西人民出版社, pp. 35-42. (Lei Z P.2006. Sports Biochemistry[M]. Shaanxi People's Publishing House, Shaanxi, China, pp. 35-42.) [4] 李闻捷, 徐玉莲, 李国强, 等. 2004. 有氧无氧训练对血乳酸的影响及相关因素分析[J]. 现代临床医学生物工程学杂志, 10(6): 471-473. (Li W J, Xu Y L, Li G Q, et al.2004. The effect of aerobic and anaerobic training on the serum level of lactic acid and its related factors analysis[J]. Journal of Modern Clinical Medical Bioengineering, 10(6): 471-473.) [5] 李晓斌, 赵国栋, 刘振, 等. 2017. 3-6月龄伊犁马肠道微生物群落多样性的研究[J]. 动物营养学报, 29(5): 1535-1544. (Li X B, Zhao G D, Liu Z, et al.2017. A study on intestinal microbiota diversity of 3 to 6 month old Yili horses[J]. Chinese Journal Of Animal Nutrition, 29(5): 1535-1544.) [6] 刘浩, 周建伟, 张瑛, 等. 2014. 燕麦干草对藏羊尿中嘌呤衍生物、肌酐及马尿酸排出量的影响[J]. 家畜生态学报, 35(9): 38-44. (Liu H, Zhou J W, Zhang Y, et al.2014. Effect of different dietary restriction levels of oat hay on excretion of purine derivatives, creatinine and hippuric acid in Tibetan sheep urine[J]. Acta Ecologae Animalis Domastici, 35(9): 38-44.) [7] 刘秀娟, 黄春香. 2017. 甜菜碱对力竭运动大鼠血清、肝脏和心肌抗氧化的影响[J]. 南京体育学院学报, 16(1): 8-12. (Liu X J, Huang C X.2017. Effect of betaine on antioxidant activity of serum、liver and cardiac muscle in rats after exhaustive exercise[J]. Journal of NanJing Sports Institute, 16(1): 8-12.) [8] 罗敏荣, 熊正英. 2006. 赖氨酸与运动能力的关系[J]. 四川体育科学, (3): 43-46. (Luo M R, Xiong Z Y. 2006. The relationship between lysine and exercise capacity[J]. Sichuan Sports Science, (3): 43-46.) [9] 马海峰, 吴瑛. 2015. 基于核磁共振的中、长跑运动员大负荷训练课30 min后尿液代谢组学特征的研究[J]. 体育科学, 35(7): 48-57. (Ma H F, Wu Y.2015. 1H NMR-based metabonomie investigation of the characteristic of human urine 30 min after a heavy load training class on the middle & long-distance race athletes[J]. China Sports Science, 35(7): 48-57.) [10] 孟军, 曾亚琦, 王建文, 等. 2016. 法特莱克耐力训练对青年伊犁马血液生化指标的影响[J]. 新疆农业科学, 53(2): 367-375. (Meng J, Zeng Y Q, Wang J W, et al.2016. The effect of fartlek endurance training on blood biochemical index of young Yili horse[J]. Xinjiang Agricultural Sciences, 53(2): 367-375.) [11] 倪震. 2011. 高住低训对大鼠骨骼肌3-甲基组氨酸和血清皮质酮的影响[D]. 硕士学位论文, 北京体育大学, 导师: 曾凡星, pp. 31-36. (Ni Z.2011. The effect of living high - training low on 3-methylhistidine in skeletal muscles and corticosterone of blood serum in rats[D]. Thesis for M. S., Beijing Sport University, Suppervisor: Zeng F X, pp. 31-36.) [12] 卿前东. 2010. 运动训练与谷氨酰胺代谢研究进展[J]. 河北体育学院学报, 24(6): 74-79. (Qing Q D.2010. Exercise training and glutamine metabolism in sports training[J]. Journal of Hebei Sport University, 24(6): 74-79.) [13] 王静. 2011. 运动性损伤后大鼠骨骼肌和血清游离氨基酸含量的变化[D]. 硕士学位论文, 上海体育学院, 导师: 左群, pp. 34-37. (Wang J.2011. Changes in free amino acids in serum and skeletal muscle of rats after sports injury[D]. Thesis for M. S., Shanghai University of Sport, Suppervisor: Zuo Q, pp. 34-37.) [14] 吴健全. 2010. 槲皮素抗疲劳作用及其相关机制的实验研究[D]. 博士学位论文, 中国人民解放军军事医学科学院, 导师: 郭长江, pp. 36-51. (Wu J Q.2010. Experimental study on anti-fatigue property of quercetin and the mechanism involved[D]. Thesis for Ph.D., Academy of Military Medical Sciences, Suppervisor: Guo C J, pp. 36-51.) [15] 吴克凉, 吴常信. 2005. 马科学科研动态和马业发展[J].中国畜牧兽医文摘, 36(4): 412-416. (Wu K L, Wu C X.2005. Advanced research on equine science and horse industry[J]. Acta Veterinaria et Zootechnica Sinica, 36(4): 412-416.) [16] 徐倩. 2012. 运动性酮体的研究现状[J]. 体育科研, 33(5): 54-57. (Xu Q.2012. Research status of sporting ketone body[J]. Sports Science Research, 33(5): 54-57.) [17] 杨丽华. 2013. 蒙古马运动相关候选基因的分子鉴定[D]. 博士学位论文, 内蒙古农业大学, 导师: 芒来, pp. 16-25. (Yang L H.2013. Molecular identification of candidate genes for locomotion in Mongolian horses[D]. Thesis for Ph.D., Inner Mongolia Agricultural University, Suppervisor: Mang L, pp. 16-25.) [18] 战旗. 2002. 谷氨酰胺和耐力训练对大鼠抗氧化水平及免疫功能影响的实验研究[D]. 硕士学位论文, 陕西师范大学, 导师: 熊正英, pp. 21-29. (Zhan Q.2002. Experimental research on the effects of glutamine and endurance exercise on rats' antioxidation and immune function[D]. Thesis for M. S., Shaanxi Normal University, Suppervisor: Xiong Z Y, pp. 21-29.) [19] 周晨浩. 2018. 泌尿系结石与肠道菌群关系的探索[D]. 硕士学位论文, 苏州大学, 导师: 袁和兴, pp. 17-20. (Zhou C H.2018. Exploration of the relationship between urinary calculus and intestinal flora[D]. Thesis for M. S., Soochow University, Suppervisor: Yuan H X, pp. 17-20.) [20] 邹思湘. 2005. 动物生物化学[M]. 北京: 中国农业出版社, pp. 36-52. (Zou S X.2005. Animal Biochemistry[M]. China Agriculture Press, pp. 36-52, Beijing, China.) [21] 左群, 王静, 于新凯. 2013. 离心运动后大鼠血清和骨骼肌甘氨酸、苏氨酸、精氨酸及赖氨酸含量的变化[J]. 中国运动医学杂志, 32(1): 56-61. (Zuo Q, Wang J, Yu X K.2013. Changes in glycine、threonine、arginine and lysine in serum and skeletal muscle of rats after eccentric exercise[J]. Chinese Journal of Sports Medicine, 32(1): 56-61.) [22] Ahn Y Y, Bagrow J P, Lehmann S.2010. Link communities reveal multiscale complexity in networks[J]. Nature, 466(7307): 761-764. [23] Armstrong L E, Casa D J, Roti M W, et al.2008. Influence of betaine consumption on strenuous running and sprinting in a hot environment[J]. The Journal of Strength and Conditioning Research, 22(3): 851-860. [24] Choi S, Disilvio B, Fernstrom M H, et al.2013. Oral branched-chain amino acid supplements that reduce brain serotonin during exercise in rats also lower brain catecholamines[J]. Amino Acids, 45(5): 1133-1142. [25] Calvani R, Miccheli A, Capuani G, et al.2010. Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype[J]. International Journal of Obesity, 34(6): 1095-1098. [26] Emery P W, Preedy V R.2003. Measuring muscle protein turnover in vivo: What can 3-methylhistidine production tell us?[J]. Clinical Science, 104(6): 557-558. [27] Hoffman J R, Ratamess N A, Kang J, et al.2009. Effect of betaine supplementation on power performance and fatigue[J]. Journal of the International Society of Sports Nutrition, 6(1): 1-10. [28] Howatson G, Hoad M, Goodall S, et al.2012. Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: A randomized, double-blind, placebo controlled study[J]. Journal of the International Society of Sports Nutrition, 9(1): 20-26. [29] Koeslag J H.1982. Post-exercise ketosis and the hormonereponse to exercise[J]. Medicineand Science in Sportsand Exercise, 14(5): 327-334. [30] Kochlik B, Gerbracht C, Grune T, et al.2018. The influence of dietary habits and meat consumption on plasma 3-methylhistidine-a potential marker for muscle protein turnover[J]. Molecular Nutrition & Food Research, 62(9): 5562-5570. [31] Luck M M, Le Moyec1 L, Barrey E, et al.2015. Energetics of endurance exercise in young horses determined by nuclear magnetic resonance metabolomics[J]. Frontiers in Physiology, 6: 1-12. [32] Nicholson J K, Wilson I D.2003. Understanding 'global' systems biology: Metabonomics and the continuum of metabolism[J]. Nature Reviews Drug Discovery, 2(8): 668-676. [33] Pechlivanis A, Kostidis S, Saraslanidis P, et al.2010. 1H NMR-based metabonomic investigation of the effect of two different exercise sessions on the metabolic fingerprint of human urine[J]. Journal of Proteome Research, 9(12): 6405-6416. [34] Roecker R, Junges G M, Lima de D D, et al.2012. Proline alters antioxidant enzyme defenses and lipoperoxidation in the erythrocytes and plasma of rats: In vitro and in vivo studies[J]. Biological Trace Element Research, 147(IS1-3): 172-179. [35] Smith P T.2002. Separation methods applicable to urinary creatine and ereatinine[J]. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 781(1-2): 93-106. [36] Thierry H, Michel E.2008. A new approach in organ preservation: Potential role of new polymers[J]. Kidney International, 74(8): 998-1003. [37] Zhu Z J, Schultz A W, Wang J, et al.2013. Liquid chromate graphy quadrupole time-of-flight mass spectrometry characterization of metabolites guided by the METLIN data base[J]. Nature Protocols, 8(3): 451-460. [38] Zheng L, Zuo F, Zhao S, et al.2017. Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs[J]. British Journal of Nutrition, 177(7): 1-12.