Cloning and Function Analysis of Root Development Associated Genes CsRDAs in Tea Plants (Camellia sinensis)
CHEN Rong1, LIU Hui1, FU Ping2, ZHAO De-Gang1, HUANG Xiao-Zhen2,1,*
1 The Key Laboratory of Plant Resources Conservation and Germplasm Innovationin Mountainous Region (Ministry of Education)/College of Life Sciences, Guizhou University, Guiyang 550025, China; 2 College of Tea Sciences, Guizhou University, Guiyang 550025, China
Abstract:Tea plants (Camellia sinensis), as an important commercial crop, are one of the popular and economic beverages worldwide. Root formation of tea plants is essential for higher yields and stable quality. To elucidate the programmed root developmental processes, the root development associated genes (CsRDAs) were isolated and cloned by reverse transcription-PCR (RT-PCR), which was based on the root transcriptome library of Guizhou landrace tea cultivars, called C. sinensis cv. Qiancha 1 (QC1) and C. sinensis cv. QianMei601 (QM601). They were named CsRDA1 (GenBank No. MW451597), CsRDA2 (GenBank No. MZ516824), CsRDA3 (GenBank No. MZ516825) and CsRDA4 (GenBank No. MZ516826), respectively. Phylogenetic and the domain analysis showed that the CsRDAs were evolutionally conservative and contained similar motifs. qPCR results showed that the 4 members of CsRDAs could specifically express in different tissues and developmental stages, which showed that their functions may be tissue specific and developmentally controlled. Meanwhile, transient expression of CsRDAs fusion protein in Nicotiana benthamiana leaves revealed that CsRDA1 and CsRDA2 mainly localized in the nucleus and cytoplasm, while CsRDA3 localized in the chloroplast and cytoplasm. Furthermore, the transgenic rice (Oryza sativa) plants which overexpressed CsRDA1 were successfully obtained by Agrobacterium tumefaciens-mediated callus transformation. Preliminary results showed that constitutive expression of CsRDA1 increased the number of roots in rice plants. These data suggested that CsRDA1 may participate in the regulation of the development of tea plant root system. It provides a theoretical reference for further elucidating the regulation network of tea plant radicle development.
[1] 崔永祯, 赵红, 黄格, 等. 2020. 农杆菌介导的冷诱导基因水稻遗传转化体系的建立[J]. 江西农业学报, 32(07): 6-11. (Cui Y Z, Zhao H, Huang G, et al.2020. Establishment of the genetic transformation system of cold-induced gene mediated by Agrobacterium in rice[J]. Jiangxi Journal of Agriculture, 32(07): 6-11.) [2] 崔桥云. 2017. 茶树CML21启动子及CML基因家族的克隆和表达分析[D]. 硕士学位论文, 南京农业大学, 导师: 黎星辉, pp. 47-53. (Cui Q Y.2017. Isolation and expression of CML21 promoter and CML genes from camellia sinensis [D]. Thesis for M. S, Nanjing Agricultural University, Supervisor: Li X H, pp. 7-53.) [3] 陈宗懋, 孙晓玲, 金珊. 2011. 茶叶科技创新与茶产业可持续发展[J]. 茶叶科学, 31(05): 463-472. (Chen Z M, Sun X L, Jin S.2011. Science innovation and sustainable development oftea industry[J]. Tea Science, 31(05): 463-472.) [4] 丁杨林. 2015. 蛋白激酶OST1调控拟南芥响应低温胁迫的分子机制[D]. 博士学位论文, 中国农业大学, 导师: 杨淑华, pp. 36-48. (Ding Y L.2015. Mechanism of cold stress responses regulated by the protein kinase OST1 in Arabidopsis[D]. Thesis for Ph.D., China Agricultural University, Supervisor: Yang S H, pp. 36-48.) [5] 傅豪. 2020. 黄山苦茶再生体系建立及红光对不定根分化的影响[D]. 硕士学位论文, 西南大学, 导师: 郭启高, pp.30-36. (Fu H.2020. Establishment of regeneration system of tea plant (Camellia gymnogyna) and effect of red light on adventitious root differentiation[D]. Thesis for M. S., Southwest University, Supervisor: Guo Q G, pp. 30-36.) [6] 方翔. 2020. 茶树扦插繁殖技术及苗圃扦插再植障碍研究[D]. 硕士学位论文, 安徽农业大学, 导师: 蒋家月, pp. 30-39. (Fang X.2020. Study on the cutting propagation technology of tea tree and cottage replanting obstacle in nursery land[D]. Thesis for M.S., Anhui Agricultural University, Supervisor: Jiang J Y, pp. 30-39.) [7] 谷星. 2017. 茶树组培和扦插快繁体系的建立及扦插不定根发生相关因素探究[D]. 硕士学位论文, 西北农林科技大学, 导师: 杨亚军, pp. 25-32. (Gu X.2017. Studies on tissue culture and rooting mechanism in cuttings of Camellia sinensis (L.) O. kuntze[D]. Thesis for M.S., Northwestern University of Agriculture, Forestry and Technology, Supervisor: Yang Y J, pp. 25-32.) [8] 皇甫思思. 2020. 基于机器视觉的油茶果果壳与茶籽分选系统研究[D]. 硕士学位论文, 湖北工业大学, 导师: 王焱清, pp. 19-54. (Huangfu S S.2020. Sorting system of seeds and shells of the camellia based on machine vision[D]. Thesis for M.S., Hubei University of Technology, Supervisor: Wang Y Q, pp. 19-54.) [9] 贺爱国, 戴艳娇, 胡志鑫,等. 2020. 不同pH条件下IBA和NAA对伴矿景天生根的影响研究[J]. 中国农学通报,36(22): 49-54. (He A G, Dai Y J, Hu Z X, et al.2020. Effects of IBA and NAA on root development of sedum plumbizincicola under different pH[J]. China Agricultural Bulletin, 36(22): 49-54.) [10] 韩晓阳, 刘晓慧, 刘腾飞, 等. 2010. 茶籽萌发过程中养分吸收特性研究[J]. 山东农业科学, (10): 66-70. (Han X Y, Liu X H, Liu T F, et al. 2010. Study on nutrient uptake characteristics during germination of tea seeds[J]. Journal of Shandong Agricultural Science, (10): 66-70.) [11] 李双, 杜建括, 邢海虹. 2021. 陕南地区茶树生长的气候适应性分析[J].陕西理工大学学报(自然科学版), 37(02): 63-70. (Li S, Du J K, Xing H H.2021. Climate adaptability analysis for tea plant (Camellia sinensis L.O. Ktze) growing in southern Shaanxi[J]. Journal of Shaanxi University of Technology (Natural Science Edition), 37(02): 63-70.) [12] 李萌. 2007. 不同处理对茶籽萌发和茶苗生长的影响[D]. 硕士学位论文, 山东农业大学, 导师: 张丽霞, pp. 25-46. (Li M.2007. The effect of different treatments on tea seed germination and seeding growth of Camellia sinensis L[D]. Thesis for M.S., Shandong Agricultural University, Supervisor: Zhang L X, pp. 25-46.) [13] 吕永康, 徐月瑶. 2016. 茶树根系形态对植株生长发育的影响研究[J]. 天津农林科技, (02): 18-21. (Lu Y K, Xu Y Y. 2016. Study on the influence of tea tree root pattern on plant growth and development[J]. Tianjin Agriculture and Forestry Technology, (02): 18-21.) [14] 蒋甲福. 2006. OsRMC基因调控水稻根生长发育的机理研究[D]. 博士学位论文, 中国科学院研究生院(植物研究所), 导师: 种康, 许智宏, pp. 73-74. (Jiang J F.2006. The regulation mechanism of rice root growth and development mediated by OsRMC[D]. Thesis for Ph.D., Graduate School of Chinese Academy of Sciences (Plant Research Institute), Supervisor: Chóng K, Xu Z H, pp. 73-74) [15] 骆耀平, 宋婷婷, 张关富,等. 2008. 当前茶叶生产中存在的主要问题和解决途径[J]. 茶叶, 34(04): 237-239. (Luo Y P, Song T T, Zhang G F, et al.2008. The main problems and solutions intea production[J]. Tea, 34(04): 237-239.) [16] 马仕君, 彭泰来, 余韵,等. 2020. 生根激素和磁场对楸树嫩枝扦插生根的影响[J].东北林业大学学报, 48(06): 21-24. (Ma S J, Peng T L, Yu Y, et al.2020. Effect of plant hormones and magnetic fields on rooting of soft cuttings for catalpa bungei[J]. Journal of Northeastern Forestry University, 48(06): 21-24) [17] 彭华, 王治会, 李延升, 等. 2020. 不同覆盖物对茶籽播种萌发的影响分析[J].农业研究与应用, 33(01): 5-8. (Peng H, Wang Z H, Li Y S, et al.2020. Effects of different covers on tea seed germination[J]. Agricultural Research and Application, 33(01): 5-8.) [18] 王金兰, 种康, 徐云远. 2009. 在拟南芥中OsRAA1异位表达促进开花及下胚轴伸长[J].科学通报, 54(18): 2819-2825. (Wang J L, Chong K, Xu Y Y.2009. OsRAA1 ectopic expression in amoeba promotes flowering and elongation of the lower embryo shaft[J]. Scientific Bulletin, 54(18): 2819-2825.) [19] 杨广容, 邵宛芳, 陶梅,等. 2013. 不同茶树品种种子萌发特性的研究[J]. 云南农业大学学报(自然科学), 28(06): 769-774. ( Yang G R, Yu W F, Tao M, et al.2013. Study on seed germination characteristics of different tea tree varieties[J]. Journal of Yunnan Agricultural University (Natural Science), 28(06): 769-774.) [20] Du L, Jiao F, Chu J, et al2007. The two-component signal system in rice (Oryza sativa L.): A genome-wide study of cytokinin signal perception and transduction[J]. Genomics, 89(6): 697-707. [21] Deng C, Ku X P, Cheng L L, et al.2020. Metabolite and transcriptome profiling on xanthine alkaloids-fed tea plant (Camellia sinensis) shoot tips and roots reveal the complex metabolic network for caffeine biosynthesis and degradation[J]. Frontiers in Plant Science, 11: 551288. [22] Ellis M D, Hoak J M, Ellis B W, et al.2020. Quantitative real-time pcr analysis of individual flue-cured tobacco seeds and seedlings reveals seed transmission of Tobacco mosaic virus[J]. Phytopathology, 110(1): 194-205. [23] Xia E H, Tong W, Hou Y, et al.2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation[J]. Molecular Plant, 13(7): 1013-1026. [24] Ge L, Chen H, Jiang J F, et al.2004. Overexpression of OsRAA1 causes pleiotropic phenotypes in transgenic rice plants, including altered leaf, flower, and root development and root response to gravity[J]. Plant PhysiologyPhysiologyogy, 135(3): 1502-1513. [25] Kamsen R, Kalapanulak S, Chiewchankaset P, et al.2021. Transcriptome integrated metabolic modeling of carbon assimilation underlying storage root development in cassava[J]. Scientific Reports, 11(1): 8758. [26] Kaufmann K, Melzer R, Theien G.2005. MIKC-type MADS-domain proteins: Structural modularity, protein interactions and network evolution in land plants[J]. Gene, 347(2) : 183-198. [27] Li J H, Emmanuel A, Cheng S Y, et al.2018. Alleviation of cold damage by exogenous application of melatonin in vegetatively propagated tea plant (Camellia sinensis (L.) O. Kuntze)[J]. Scientia Horticulturae, 238: 356-362. [28] Li J H, Yang Y Q, Sun K, et al.2019. Exogenous melatonin enhances cold, salt and drought stress tolerance by improving antioxidant defense in tea plant (Camellia sinensis (L.) O. Kuntze)[J]. Molecules, 24(9): 1826. [29] Liu M Y, Asdrubal B, Zhang Q F, et al.2017. Analyses of transcriptome profiles and selected metabolites unravel the metabolic response to NH4+ and NO3- as signaling molecules in tea plant (Camellia sinensis L.)[J]. Scientia Horticulturae, 218: 293-303. [30] Liu X X, Zhang J G, Li X, et al.2021. Transcriptome-wide effect of Salix SmSPR1 in etiolated seedling of Arabidopsis[J]. Journal of Forestry Research, 32(03): 975-985. [31] Muñoz-Fambuena N, Mesejo C, M. González-Mas M C, et al.2011. Fruit regulates seasonal expression of flowering genes in alternate-bearing 'Moncada' mandarin[J]. Annals of Botany, 108(3): 511-519. [32] Minh G, Doris V, Anna H Bet al.2021. Transcriptome sequencing analysis of maize roots reveals the effects of substrate and root hair formation in a spatial context[J]. Plant and Soil, 02: 1-18. [33] Nagpal P, Ellis-Christine M, Weber H, et al.2005. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation[J]. Development (Cambridge, England), 132(18): 4107-4118. [34] Oh E, Zhu J Y, Bai M Y, et al.2014. Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl[J]. Elife, 3: e03031. [35] Pu L, Liu M S, Kim S Y, et al.2013. Embryonic flower 1 and ultrapetala 1 act antagonistically on Arabidopsis development and stress response[J]. Plant Physiology, 162(2): 812-830. [36] Swarup R, Parry G, Graham N, et al.2002. Auxin cross-talk: Integration of signalling pathways to control plant development[J]. Plant Molecular Biollogy 49 (3-4): 411-426. [37] Staswick Paul E, Serban B, Rowe M, et al.2005. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid[J]. The Plant Cell, 17(2): 616-627. [38] Song L, Pan Z Z, Chen L, 2020. Analysis of whole transcriptome RNA-seq data reveals many alternative splicing events in soybean roots under drought stress conditions[J]. Genes, 11(12): 1520. [39] Wei K, Wang L Y, Wu L Y, et al.2017. Transcriptome analysis of indole-3-butyric acid-induced adventitious root formation in nodal cuttings of Camellia sinensis (L.)[J]. PLOS ONE, 9(9): e107201. [40] Wei C L, Yang H, Wang S B, et al.2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality[J]. Proceedings of the National Academy of Sciences of the USA, 115(18): E4151-E4158. [41] Wu M F, Tian Q, Reed J W.2006. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction[J]. Development, 133(21): 4211-4218. [42] Xiao F, Zhao Y, Wang X R, et al.2021. Transcriptome analysis of needle and root of Pinus massoniana in response to continuous drought stress[J]. Plants (Basel), 10(4):769. [43] Xu M L, Jiang J F, Ge L, et al.2005. FPF1 transgene leads to altered flowering time and root development in rice[J].Plant Cell Reports, 24(2): 79-85.