The Function on Dimorphic Transition of the Uegpa3 Gene in Ustilago esculenta
YU Jin-Meng*, ZHANG Ya-Fen*, GE Qian-Wen, HU Ying-Li, GAO Li-Dan, XIA Wen-Qiang, YE Zi-Hong**
Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine/College of Life Sciences, China Jiliang University, Hangzhou 310018, China
Abstract:Ustilago esculenta can infect Zizania latifolia to induce edible fleshy stem, which called Jiaobai in China. It was found that U. esculenta was a dimorphic fungus, there is transformation between yeast type and mycelium type, and this dimorphic transition was related to its pathogenicity. When the lipopeptide pheromone encoded by mfa (mating factor) gene and pheromone receptor encoded by the pra (pheromone receptor) gene recognize each other, they activate cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) signal transduction pathway and mitogen-activated protein kinase cascade (MAPK) signaling pathways, which make the fusion of 2 yeast-type compatible strains and form hyphae, then have pathogenicity. In this study, the gene Uegpa3 (Ustilago esculenta guanine uncleotide-binding protein subunit alpha-3)(GenBank No. ALS87611.1), encoding the α subunit of G protein, was cloned based on the whole genome analysis of U. esculenta. The cDNA length of Uegpa3 is 1 065 bp, without introns, encoding 354 amino acids, with a typical Gα domain. The expression patterns analysis showed that the expression of Uegpa3 was up-regulated during conjunction tube formation. Uegpa3 deletion mutant was constructed based on PEG (polyethylene glycol) mediated protoplast transformation and it was found that the Uegpa3 deletion strain could not fuse to form mycelium. Furthermore, the ability of conjunction tube was lost in Uegpa3 mutant during mating and the expression of pheromone synthesis gene was significantly inhibited. The above results demonstrated that Uegpa3 affected the conjugation tube formation in the dimorphic transition in U. esculenta through regulating phenome recognition. This study preliminarily explored the function of the Uegpa3, a gene encoding one of the G protein α subunits in U. esculenta, and discussed its role in dimorphic transition, which provide basic material for the research on the interaction mechanism between the U. esculenta and Z. latifolia.
于金梦, 张雅芬, 葛倩雯, 胡映莉, 高丽丹, 夏文强, 叶子弘. Uegpa3基因在菰黑粉菌二型态转换中的作用[J]. 农业生物技术学报, 2020, 28(5): 892-902.
YU Jin-Meng, ZHANG Ya-Fen, GE Qian-Wen, HU Ying-Li, GAO Li-Dan, XIA Wen-Qiang, YE Zi-Hong. The Function on Dimorphic Transition of the Uegpa3 Gene in Ustilago esculenta. 农业生物技术学报, 2020, 28(5): 892-902.
[1] 李利, 陈莎, 毛涛, 等. 2013.丝状真菌G蛋白信号途径的研究进展[J]. 微生物学通报, 40(8): 1493-1507. (Li L,Chen S, Mao T, et al.2013. Research progress on G protein signal pathway of filamentous fungi[J]. Chinese Journal of Microbiology, 40(8): 1493-1507.) [2] 刘洪磊, 于金梦, 曹乾超, 等. 2019. UeFuz7在菰黑粉菌二型态转换中的作用[J]. 植物病理学报, 49(2): 203-211. (Liu H L, Yu J M, Cao Q C, et al.2019. The function on dimorphic transition of UeFuz7 in Ustilago esculenta[J]. Journal of Plant Pathology, 49(2): 203-211.) [3] 吴敏, 张雅芬, 夏文强, 等. 2019. 菰黑粉菌UeCS3.1基因的克隆及功能研究[J]. Journal of Agricultural Biotechnology, 27(8): 1467-1477. (Wu M, Zhang Y F, Xia W Q, et al.2019. Cloning and functional study of UeCS3.1 gene in Ustilago esculenta[J]. Journal of Agricultural Biotechnology, 27(8): 1467-1477.) [4] 殷淯梅. 2019. 菰黑粉菌T型和MT型菌株致病力的差异及冬孢子形成相关的基因的初步研究[D]. 硕士学位论文, 中国计量大学, 导师: 叶子弘, pp. 28-30. (Yin Y M.Preliminarystudy ofthe pathogenic differences between T and MT type Ustilago esculenta and the genes related to teliopores formation[D]. Thesis for M.S., China Jiliang University, Supervisor: Ye Z H. pp. 28-30.) [5] 余佳佳. 2016. 菰黑粉菌a基因的克隆及功能研究[D]. 硕士学位论文,中国计量大学,导师: 叶子弘, pp. 52-59. (Yu J J.2016. Cloning and functional study of a gene in Ustilago esculenta[D].Thesis for M. S., China Jiliang University, Supervisor: Ye Z H. pp. 52-59.) [6] 赵勇, 王云川, 蒋德伟, 等. 2014.真菌G蛋白信号调控蛋白的功能研究进展[D]. 微生物学通报, 41(4): 712-718. (Zhao Y, Wang Y C, Jiang D W, et al.2014. Advances in the function of fungal G protein signal-regulating proteins[D]. Microbiology China, 41(4): 712-718.) [7] Banuett F, Herskowitz I.1994. Identification of fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and-independent steps in the fungal life cycle[J]. Genes & Development, 8(12): 1367-1378. [8] Bölker M.2001. Ustilago maydis-a valuable model system for the study of fungal dimorphism and virulence[J]. Microbiology, 147(6): 1395-1401. [9] Bölker M, Urban M, Kahmann R.1992. The a mating type locus of U. maydis specifies cell signaling components[J]. Cell, 68(3): 441-450. [10] Boyce K J, Andrianopoulos A.2015. Fungal dimorphism: The switch from hyphae to yeast is a specialized morphogenetic adaptation allowing colonization of a host[J]. FEMS Microbiology Reviews, 39(6): 797-811. [11] Caza M, Kronstad J W.2019. The cAMP/Protein Kinase A pathway regulates virulence and adaptation to host conditions in Cryptococcus neoformans[J]. Frontiers in Cellular and Infection Microbiology, (9): 212. [12] Choi J, Jung W H, Kronstad J W.2015. The cAMP/protein kinase A signaling pathway in pathogenic basidiomycete fungi: Connections with iron homeostasis[J]. Journal of Microbiology, 53(9): 579-587. [13] Chung K R, Tzeng D D.2004. Nutritional requirements of the edible gall-producing fungus Ustilago esculenta[J]. Journal of Biological Sciences, 4(2): 246-252. [14] Duc N M, Kim H R, Chung K Y.2015. Structural mechanism of G protein activation by G protein-coupled receptor[J]. European Journal of Pharmacology, 763: 214-222. [15] Dürrenberger F, Kronstad J.1999. The ukc1 gene encodes a protein kinase involved in morphogenesis, pathogenicity and pigment formation in Ustilago maydis[J]. Molecular and General Genetics, 261(2): 281-289. [16] Herskowitz I.1995. MAP kinase pathways in yeast: For mating and more[J]. Cell, 80(2): 187-197. [17] Hsueh Y P, Xue C, Heitman J.2007. G protein signaling governing cell fate decisions involves opposing Gα subunits in Cryptococcus neoformans[J]. Molecular Biology of the Cell, 18(9): 3237-3249. [18] Kaffarnik F, Müller P, Leibundgut M, et al.2003. PKA and MAPK phosphorylation of Prf1 allows promoter discrimination in Ustilago maydis[J]. The EMBO Journal, 22(21): 5817-5826. [19] Krüger J, Loubradou G, Wanner G, et al.2000. Activation of the cAMP pathway in Ustilago maydis reduces fungal proliferation and teliospore formation in plant tumors[J]. Molecular Plant-microbe Interactions, 13(10): 1034-1040. [20] Li L, Shen G, Zhang Z G, et al.2007. Canonical heterotrimeric G proteins regulating mating and virulence of Cryptococcus neoformans[J]. Molecular Biology of the Cell, 18(11): 4201-4209. [21] Liang S W, Huang Y H, Chiu J Y, et al.2019. The smut fungus Ustilago esculenta has a bipolar mating system with three idiomorphs larger than 500 kb[J]. Fungal Genetics and Biology, 126: 61-74. [22] Livak K J, Schmittgen T D.2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods, 25(4): 402-408. [23] Müller P, Aichinger C, Feldbrügge M, et al.1999. The MAP kinase kpp2 regulates mating and pathogenic development in Ustilago maydis[J]. Molecular Microbiology, 34(5): 1007-1017. [24] Nadal M, García-Pedrajas M D, Gold S E.2008. Dimorphism in fungal plant pathogens[J]. FEMS Microbiology Letters, 284(2): 127-134. [25] Pan X, Heitman J.1999. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae[J]. Molecular and Cellular Biology, 19(7): 4874-4887. [26] Regenfelder E, Spellig T, Hartmann A, et al.1997.G proteins in Ustilago maydis: Transmission of multiple signals?[J]. The EMBO Journal, 16(8): 1934-1942. [27] Stork P J S, Schmitt J M.2002. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation[J]. Trends in Cell Biology, 12(6): 258-266. [28] Wahl R, Zahiri A, Kämper J.2010. The Ustilago maydis b mating type locus controls hyphal proliferation and expression of secreted virulence factors in planta[J]. Molecular Microbiology, 75(1): 208-220. [29] Ye Z H, Pan Y, Zhang Y F, et al.2017. Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome[J]. DNA Research, 24(6): 635-648. [30] Yu J J, Zhang Y F, Cui H F, et al.2015. An efficient genetic manipulation protocol for Ustilago esculenta[J]. FEMS Microbiology Letters, 362(12): fnv087. [31] Zhang Y F, Cao Q C, Hu P, et al.2017. Investigation on the differentiation of two Ustilago esculenta strains-implications of a relationship with the host phenotypes appearing in the fields[J]. BMC Microbiology, 17(1): 228. [32] Zhang Y F, Ge Q W, Cao Q C, et al.2018. Cloning and characterization of two MAPK genes UeKpp2 and UeKpp6 in Ustilago esculenta[J]. Current Microbiology, 75(8): 1016-1024. [33] Zhang Y F, Yin Y M, Hu P, et al.2019. Mating-type loci of Ustilago esculenta are essential for mating and development[J]. Fungal Genetics and Biology, 125: 60-70.