|
|
Research Progress in Genomics and Functional Genes of Ganoderma lingzhi |
XIE Xin1, HE Li-Ming1, CAI Ling1, LIU Lin-Qiu1, LUO Xia1,2* |
1 Laboratory for Systemic Research and Development of Fungal Medicinal Materials, Institute of Fungal Medicinal Materials, Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; 2 Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Chengdu 610041, China |
|
|
Abstract Ganoderma lingzhi is a valuable edible and medicinal fungus, at present, there are more than 200 kinds of secondary metabolites isolated from various tissues of G. lingzhi, among which G. lingzhi triterpenoids and polysaccharides are its main active ingredients, and their pharmacological effects mainly include anti-hypertensive, anti-tumor, anti-aging, The completion of G. lingzhi genome sequencing and the establishment of genetic transformation system have gradually become a model fungus for the study of the synthesis and regulation of secondary metabolites of medicinal fungi, and its molecular biology research involves the identification of G. lingzhi germplasm resources, genetic diversity, variety breeding, functional gene cloning, etc.. In this paper, the research progress of G. lingzhi genomics, functional genes involved in the regulation of G. lingzhi growth and development, metabolite synthesis, abiotic stress and signal transduction were summarized, so as to provide a reference for the further development and application of G. lingzhi and a scientific basis for elucidating the molecular mechanism of G. lingzhi efficacy.
|
Received: 27 August 2024
|
|
Corresponding Authors:
* 287748567@qq.com
|
|
|
|
[1] 才晓玲, 何伟, 安福全. 2016. 灵芝菌生物学特性及栽培基质研究进展[J]. 现代农业科技, 69(7): 95-98. 9.(Cai X L, He W, An F Q, 2016. Research progress on biological characteristics and culture substrates of Ganoderma lucidum[J]. Modern Agricultural Science and Technology, 69(7): 95-98, 9.) [2] 崔宝凯, 潘新华, 潘峰, 等. 2023. 中国灵芝属真菌的多样性与资源[J]. 菌物学报, 42(01): 170-178.(Cui B K, Pan X H, Pan F, et al.2023. Species diversity and resources of Ganoderma in China[J]. Mycosystema, 42(01): 170-178.) [3] 戴玉成, 杨祝良, 崔宝凯, 等. 2021. 中国森林大型真菌重要类群多样性和系统学研究[J]. 菌物学报, 40(4): 770-805.(Dai Y C, Yang Z L, Cui B K, et al.2021. Diversity and systematics of the important macrofungi in Chinese forests[J]. Mycosystema, 40: 770-805.) [4] 邓春莉, 孙蕾, 滕月, 等. 2024. 石斛属植物功能基因研究现状[J/OL]. 分子植物育种, 1-9.(Deng C L, Sun L, Teng Y, et al.2024. Research status of functional genes of Dendrobium spp.[J/OL]. Molecular Plant Breeding, 1-9.) [5] 胡爽. 2023. 松杉灵芝的功能基因组学分析及萜类合酶相关基因挖掘[D]. 硕士学位论文, 吉林农业大学, 导师: 付永平, pp. 9-27.(Hu S.2023. Functional genomics analysis and terpene synthase-related gene mining of Ganoderma tsugae[D]. Thesis for MS., Jilin Agricultural University, Suppervisor: Fu Y P, pp. 9-27.) [6] 孟丽, 刘骊. 2017. 不同灵芝品种生物学特性的对比试验[J]. 中国食用菌, 36(3):26-28.(Meng L, Liu L.2017. Comparative test on the biological characteristics of different Ganoderma lucidum varieties[J]. Edible Fungi of China, 36(3): 26-28.) [7] 马欣宇, 徐蓓蕾, 宋辉, 等. 2023. 灵芝化学成分及防治肿瘤的研究进展[J]. 中国药学杂志, 58(16): 1437-1446. [8] 师小凡, 刘艳芳, 唐传红,等. 2023. 沪农系列灵芝新品种活性成分及免疫活性对比研究[J].食用菌学报, 30(01): 64-72.(Shi XF, Liu YF, Tang CH, et al.2023. Comparative study on active components and immune activity of new Ganoderma lucidum cultivars of 'Hunong'' series[J]. Acta Edulis Fungi, 30(01): 64-72.) [9] 武美华, 张胜男, 敬隆鑫, 等. 2023.灵芝的活性成分及其药理作用的研究进展[J]. 中国林副特产, 2023(02): 76-79.(Wu M H, Zhang S N, Jing L X, et al.2023. Research progress of active components and pharmacological action of Ganoderma lucidum[J]. Forest By-Product and Speciality in China, 2023(02): 76-79.) [10] 邢茜, 高兵, 2019. 林下仿生栽培灵芝总黄酮含量分析[J]. 农业技术与装备,(12): 28-29+31. [11] 徐勇亮, 徐军伟, 2022. 灵芝不同菌株胞外多糖的单糖组成和抗氧化活性分析[J]. 菌物学报, 41(5): 792-801.(Xu YL, Xu JW, 2022. A comparative study on monosaccharide compositions and antioxidant activities of purified exopolysaccharides from two different Ganoderma lingzhi strains[J]. Mycosystema, 41(5): 792-801.) [12] 杨梅, 岳亚文, 张劲松, 等. 2022. 灵芝羊毛甾烷型三萜抗肿瘤构效关系初探[J]. 菌物学报, 41(9): 1519-1528.(Yang M, Yue Y W, Zhang J S, et al.2022. A preliminary investigation on anti-tumor structure-activity relationship of lanostane triterpenes from Ganoderma spp.[J]. Mycosystema, 41(9): 1519-1528.) [13] 张广. 2021. APSES转录因子基因GlSwi6在灵芝生长、细胞壁完整性和次级代谢中的功能研究[D]. 博士学位论文, 南京农业大学, 导师: 赵明文, pp. 1-147.(Zhang G, 2021. The function of APSES transcription factor gene GlSwi6 in fungal growth, cell wall integrity and secondary metabolism in Ganoderma lucidum[D]. Dissertation for PhD., Nanjing Agricultural University, Suppervisor: Zhao M W, pp. 1-147.) [14] 张文君, 宋扬, 胡扬, 等. 2023. 灵芝抗肿瘤作用及其配伍的研究进展[J]. 中草药, 54(16): 5390-5398.(Zhang W J, Song Y, Hu Y, et al.2023. Research progress on antitumor effect and compatibility of Ganoderma[J]. Chinese Traditional and Herbal Drugs, 54(16): 5390-5398.) [15] 朱亚婷, 肖郑鹏, 周佳丽, 等. 2023. 过表达腺苷生物合成正相关基因GlPNP提高灵芝腺苷的含量[J]. 微生物学通报, 50(10): 4401-4412.(Zhu Y T, Xiao Z P, Zhou J L, et al.2023. Overexpression of GlPNP a gene positively correlated with adenosine biosynthesis, increases the adenosine content of Ganoderma lucidum[J]. Microbiology China, 50(10): 4401-4412.) [16] Agudelo-Valencia D, Uribe-Echeverry P T, Betancur-Perez J F, 2020. De novo assembly and annotation of the Ganoderma australe genome[J]. Genomics, 112(1): 930-933. [17] Baby S, Johnson A J, Govindan B, 2015. Secondary metabolites from Ganoderma[J]. Phytochemistry. 114: 66-101. [18] Cao Y, Wu S, Dai Y.2012. Species clarification of the prize medicinal Ganoderma mushroom 'Lingzhi'[J]. Fungal Diversity, 56: 49-62. [19] Chen J, Fan J, Liu W, et al.2022. Trehalose-6-phosphate synthase influences polysaccharide synthesis and cell wall components in Ganoderma lucidum[J]. Journal of Basic Microbiology, 62(11): 1337-1345. [20] Chen J, Xu W, Wang Z, et al.2023. Mitochondrial pyruvate carrier influences ganoderic acid biosynthesis in Ganoderma lucidum[J]. Applied Microbiology and Biotechnology, 107(4): 1361-1371. [21] Chen S, Xu J, Liu C, et al.2012. Genome sequence of the model medicinal mushroom Ganoderma lucidum[J]. Nature Communications, 3: 913. [22] Ding Y X, Ou Y X, Shang C H, et al.2008, Molecular cloning, characterization, and differential expression of a farnesyl-diphosphate synthase gene from the basidiomycetous fungus Ganoderma lucidum[J]. Bioscience, Biotechnology, and Biochemistry, 72(6): 1571-1579. [23] Fang X, Shi L, Ren A, et al.2013. The cloning, characterization and functional analysis of a gene encoting an acety-CoA acetylransferase involved intriterpene biosynthesis in Ganoderma lucidum[J]. Mycoscience, 2013, 54(2) : 100-105. [24] Gastebois A, Clavaud C, Aimanianda Vet al.2009. Aspergillus fumigatus: cell wall polysaccharides, their biosynthesis and organization[J]. Future Microbiology, 4(5): 583-595. [25] Han X, Wang Z, Shi L, et al.2022. Phospholipase D and phosphatidic acid mediate regulation in the biosynthesis of spermidine and ganoderic acids by activating GlMyb in Ganoderma lucidum under heat stress[J]. Environmental Microbiology, 24(11): 5345-5361. [26] Hu Y, Li M, Wang S, et al.2018. Ganoderma lucidum phosphoglucomutase is required for hyphal growth, polysaccharide production, and cell wall integrity[J]. Applied Microbiology and Biotechnology, 102(4): 1911-1922. [27] Ji S L, Liu R, Ren M F, et al.2015. Enhanced production of polysaccharide through the overexpression of homologous uridine diphosphate glucose pyrophosphorylase gene in a submerged culture of lingzhi or reishi medicinal mushroom, Ganoderma lucidum (higher basidiomycetes)[J]. International Journal of Medicinal Mushrooms, 17(5): 435-442. [28] Lian L, Qiao J, Guo X, et al.2023. The transcription factor GCN4 contributes to maintaining intracellular amino acid contents under nitrogen-limiting conditions in the mushroom Ganoderma lucidum[J]. Microbial Cell Factories, 22(1): 205. [29] Lian L, Wang L, Song S, et al.2021. GCN4 regulates secondary metabolism through activation of antioxidant gene expression under nitrogen limitation conditions in Ganoderma lucidum[J]. Applied Microbiology and Biotechnology, 87(14): e0015621. [30] Lian L D, Shi L Y, Zhu J, et al.2022. GlSwi6 positively regulates cellulase and xylanase activities through intracellular Ca2+ signaling in Ganoderma lucidum[J]. Journal of Fungi (Basel), 8(2): 187. [31] Liu D, Gong J, Dai W, et al.2012. The genome of Ganoderma lucidum provides insights into triterpenes biosynthesis and wood degradation[J]. PLOS ONE, 7(5): e36146. [32] Liu H, Qiao J, Shang G J, et al.2023. Effects of glutamate oxaloacetate transaminase on reactive oxygen species in Ganoderma lucidum[J]. Applied Microbiology and Biotechnology, 107(5-6): 1845-1861. [33] Liu R, Zhang X, Ren A, et al.2018. Heat stress-induced reactive oxygen species participate in the regulation of 热胁迫P expression, hyphal branching and ganoderic acid biosynthesis in Ganoderma lucidum[J]. Microbiological Research, 209: 43-54. [34] Liu R, Zhu T, Chen X, et al.2022. GSNOR regulates ganoderic acid content in Ganoderma lucidum under heat stress through S-nitrosylation of catalase[J]. Communications Biology, 5(1): 32. [35] Liu Y, Huang L, Hu H, et al.2021. Whole-genome assembly of Ganoderma leucocontextum (Ganodermataceae, Fungi) discovered from the Tibetan Plateau of China[J]. G3 Genes|Genomes|Genetics, 11(12): 337. [36] Meng L, Zhang S, Chen B, et al.2021. The MADS-box transcription factor GlMADS1 regulates secondary metabolism in Ganoderma lucidum[J]. Mycologia, 113(1): 12-19. [37] Meng L, Zhou R, Liang L, et al.2024. 4-coumarate-CoA ligase (4-CL) enhances flavonoid accumulation, lignin synthesis, and fruiting body formation in Ganoderma lucidum[J]. Gene, 899: 148147. [38] Qiao J, Liu H, Xue P, et al.2023. Function of a hydrophobin in growth and development, nitrogen regulation, and abiotic stress resistance of Ganoderma lucidum[J]. FEMS Microbiology Letters, 370: fnad051. [39] Shang C H, Shi L, Ren A, et al.2010. Molecular cloning, characterization, and differential expression of a lanosterol synthase gene from Ganoderma lucidum[J]. Bioscience, Biotechnology, and Biochemistry, 74(5): 974-978. [40] Shang C H, Zhu F, Li N, et al.2008. Cloning and characterization of a gene encoding HMG-CoA reductase from Ganoderma lucidum and its functional identification in yeast[J]. Bioscience, Biotechnology, and Biochemistry, 72(5): 1333-1339. [41] Shi L, Qin L, Xu Y, et al.2012. Molecular cloning, characterization, and function analysis of a mevalonate pyrophosphate decarboxylase gene from Ganoderma lucidum[J]. Molecular Biology Reports, 39(5): 6149-6159. [42] Shi Y, Cai D, Wang X, et al.2012. Immunomodulatory effect of Ganoderma lucidum polysaccharides (GLP) on long-term heavy-load exercising mice[J]. International Journal for Vitamin and Nutrition Research, 82(6): 383-390. [43] Tang Y J, Zhong J J.2002, Exopolysaccharide biosynthesis and related enzyme activities of the medicinal fungus, Ganoderma lucidum, grown on lactose in a bioreactor[J]. Biotechnology Letters, 2412: 1023-1026. [44] Tao Y, Han X, Ren A, et al.2021. Heat stress promotes the conversion of putrescine to spermidine and plays an important role in regulating ganoderic acid biosynthesis in Ganoderma lucidum[J]. Applied Microbiology and Biotechnology, 105(12): 5039-5051. [45] Wang S, Han J, Xia J, et al.2020. Overexpression of nicotinamide mononucleotide adenylyltransferase (nmnat) increases the growth rate, Ca2+ concentration and cellulase production in Ganoderma lucidum[J]. Applied Microbiology and Biotechnology, 104(16): 7079-7091. [46] Wang S, Shi L, Hu Y, et al.2018. Roles of the Skn7 response regulator in stress resistance, cell wall integrity and GA biosynthesis in Ganoderma lucidum[J]. Fungal Genetics and Biology, 114: 12-23. [47] Wang T, Wang Y, Chen C, et al.2021. Effect of the heme oxygenase gene on mycelial growth and polysaccharide synthesis in Ganoderma lucidum[J]. Journal of Basic Microbiology, 61(3): 253-264. [48] Wang Z X, Li N, Xu J W.2021. Effects of efficient expression of Vitreoscilla hemoglobin on production, monosaccharide composition, and antioxidant activity of exopolysaccharides in Ganoderma lucidum[J]. Microorganisms, 9(8): 1551 [49] Wang Z, Qiu H, Li Y, et al.2024. GlPRMT5 inhibits GlPP2C1 via symmetric dimethylation and regulates the biosynthesis of secondary metabolites in Ganoderma lucidum[J]. Communications Biology, 7(1): 241. [50] Wu T, Liu X, Wang T, et al.2022. Heme oxygenase/carbon monoxide participates in the regulation of Ganoderma lucidum heat-stress response, ganoderic acid biosynthesis, and cell-wall integrity[J]. International Journal of Molecular Sciences, 23(21): 13147. [51] Xu J, Wang Y, Zhang Y, et al.2022. Identification of a novel metabolic target for bioactive triterpenoids biosynthesis in Ganoderma lucidum[J]. Frontiers in Microbiology, 13: 878110. [52] Xu W, Fan J, Wang Y, et al.2021. Mitochondrial pyruvate carrier regulates the lignocellulosic decomposition rate through metabolism in Ganoderma lucidum[J]. FEMS Microbiology Letters, 368(14): fnab088. [53] Xu Y L, Yuan H, Li N, et al.2023. Increased production and anti-senescence activity of exopolysaccharides in Ganoderma lingzhi by co-overexpression of β-1, 3-glucan synthase and UDP-glucose pyrophosphorylase[J]. Internationaljournal of Biological Macromolecules, 253(Pt 2): 126778. [54] Yang C, Li W, Li C, et al.2018. Metabolism of ganoderic acids by a Ganoderma lucidum cytochrome P450 and the 3-keto sterol reductase ERG27 from yeast[J]. Phytochemistry, 155: 83-92. [55] Yang S L, Yang X, Zhang H.2020, Extracellular polysaccharide biosynthesis in Cordyceps[J]. Critical Reviews in Microbiology, 46(4): 359-380. [56] Yang Y, Zhang Y, He J, et al.2022. Transcription factor GlbHLH regulates hyphal growth, stress resistance, and polysaccharide biosynthesis in Ganoderma lucidum[J]. Journal of Basic Microbiology, 62(1): 82-91. [57] Ye L, Liu S, Xie F, et al.2018. Enhanced production of polysaccharides and triterpenoids in Ganoderma lucidum fruit bodies on induction with signal transduction during the fruiting stage[J]. PLOS ONE, 13(4): e0196287. [58] Zhang G, Ren A, Shi L, et al.2018. Functional analysis of an APSES transcription factor (GlSwi6) involved in fungal growth, fruiting body development and ganoderic-acid biosynthesis in Ganoderma lucidum[J]. Microbiological Research, 207: 280-288. [59] Zhang G, Zhang C, Leng D, et al.2021. The non-canonical functions of telomerase reverse transcriptase gene GlTert on regulating fungal growth, oxidative stress, and ganoderic acid biosynthesis in Ganoderma lucidum[J]. Applied Microbiology and Biotechnology, 105(19): 7353-7365. [60] Zhang T J, Shi L, Chen D D, et al.2018. 14-3-3 proteins are involved in growth, hyphal branching, ganoderic acid biosynthesis, and response to abiotic stress in Ganoderma lucidum[J]. Applied Microbiology and Biotechnology, 102(4): 1769-1782. [61] Zhao M W, Liang W Q, Zhang D B, et al.2007. Cloning and characterization of squalene synthase (SQS) gene from Ganoderma lucidum[J]. Journal of Microbiology and Biotechnology, 17(7): 1106-1112. [62] Zhou S, Zhang J, Ma F, et al.2018. Investigation of lignocellulolytic enzymes during different growth phases of Ganoderma lucidum strain G0119 using genomic, transcriptomic and secretomic analyses[J]. PLOS ONE, 13(5): e0198404. [63] Zhu Q, Ren A, Ding J, et al.2022. Cross talk between GlAQP and NOX modulates the effects of ROS Balance on ganoderic acid biosynthesis of Ganoderma lucidum under water stress[J]. Microbiology Spectrum, 10(6): e0129722. [64] Zhu Y, Xu J, Sun C, et al.2015. Chromosome-level genome map provides insights into diverse defense mechanisms in the medicinal fungus Ganoderma sinense[J]. Scientific Reports, 5: 11087. |
|
|
|