|
|
Advances in Sperm Sorting Technology for Livestock Based on the Difference Between X and Y Spermatozoa |
CAO Chao-Yue, HU Bing-Yan, LI Meng-Xuan, PANG Wei-Jun* |
College of Animal Science and Technology, Northwest A&F University/Shaanxi Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Yangling 712100, China |
|
|
Abstract Livestock sex control is a reproductive technology that involves human intervention to produce offspring of the desired sex, including the separation of X and Y sperm before fertilization and the identification of embryos after fertilization. Among these methods, the separation of X and Y sperm before fertilization is the most direct and effective approach. Multiple inherent differences between X and Y sperm in livestock, and establishing simple, cost-effective, and efficient sperm sorting technologies based on these differences is of significant importance for enhancing the economic benefits of the livestock industry. This article reviewed the multidimensional biological differences between X and Y sperm in livestock, including motility, protein composition, DNA content, and membrane charge. It also discussed 3 main categories of sorting techniques: 1) methods based on the motility differences of X and Y sperm, such as the swim-up method, pH method, and Toll-like receptors 7/8 (TLR7/8) activation method; 2) methods based on differences in protein composition, such as the magnetic bead-conjugated antibody method and poly-lactic acid film-conjugated antibody method; 3) methods based on differences in DNA content and membrane charge, such as flow cytometry sorting and electrophoresis. Additionally, this article analyzed and evaluated the advantages and limitations of each method, and provides an outlook on future research directions for sperm sorting technologies in livestock, offers a theoretical basis for the development of new sex control technologies.
|
Received: 25 April 2024
|
|
Corresponding Authors:
* pwj1226@nwafu.edu.cn
|
|
|
|
[1] 石咏, 刘怡冰, 刘华涛, 等. 2022. 基于蛋白组学鉴定猪精子中的性染色体基因表达及其生物学功能[J]. 农业生物技术学报, 30(9): 1747-1762.(Shi Y, Liu Y B, Liu H T, et al.2022. Identification of porcine (Sus scrofa) sperm sex chromosome gene expression and its biological function based on proteomics[J]. Journal of Agricultural Biotechnology, 30(9): 1747-1762.) [2] 张彦. 2021. 羊性别分选精子差异蛋白鉴定与分析[D]. 博士学位论文, 安徽农业大学, 导师: 陈宏权, 张子军, pp. 28-79.(Zhang Y.2021. Identification and analysis of differential proteins in sex-sorting sperm of goat and sheep[D]. Thesis for Ph. D., Anhui Agricultural University, supervisor: Chen H Q, Zhang Z J, pp. 28-79.) [3] Azizeddin A, Ashkar F A, King W A, et al.2014. Enrichment of Y‐chromosome‐bearing bull spermatozoa by swim‐up through a column[J]. Reproduction in Domestic Animals, 49(1): e1-4. [4] Borowsky R, Luk A, He X, et al.2018. Unique sperm haplotypes are associated with phenotypically different sperm subpopulations in Astyanax fish[J]. BMC Biology, 16(1): 72. [5] Burgoyne P S, Arnold A P.2016. A primer on the use of mouse models for identifying direct sex chromosome effects that cause sex differences in non-gonadal tissues[J]. Biology of Sex Differences, 7: 68. [6] Cai P, Yuan H, Gao Z, et al.2023. 17β-estradiol induced sex reversal and gonadal transcriptome analysis in the oriental river prawn (Macrobrachium nipponense): Mechanisms, pathways, and potential harm[J]. International Journal of Molecular Sciences, 24(10): 8481. [7] Carvalho J O, Silva L P, Sartori R, et al.2013. Nanoscale differences in the shape and size of X and Y chromosome-bearing bovine sperm heads assessed by atomic force microscopy[J]. PLOS ONE, 8(3): e59387. [8] Chandler J E, Steinholt-Chenevert H C, Adkinson R W, et al.1998. Sex ratio variation between ejaculates within sire evaluated by polymerase chain reaction, calving, and farrowing records[J]. Journal of Dairy Science, 81(7): 1855-1867. [9] Chen X, Zhu H, Wu C, et al.2012. Identification of differentially expressed proteins between bull X and Y spermatozoa[J]. Journal of Proteomics, 77: 59-67. [10] De Canio M, Soggiu A, Piras C, et al.2014. Differential protein profile in sexed bovine semen: Shotgun proteomics investigation[J]. Molecular Biosystems, 10(6): 1264-1271. [11] Espinosa-Cervantes R, Córdova-Izquierdo A.2013. Sexing sperm of domestic animals[J]. Tropical Animal Health and Production, 45(1): 1-8. [12] Gaur P, Saini G, Sahran P, et al.2020. Sex sorted semen-methods, constraints and future perspective[J]. Veterinary Research International, 8(4): 368-375. [13] Gledhill B L.1988. Selection and separation of X-and Y-chromosome-bearing mammalian sperm[J]. Gamete Research, 20(3): 377-395. [14] González-Marín C, Góngora C E, Moreno J F, et al.2021. Small ruminant SexedULTRA™ sperm sex-sorting: Status report and recent developments[J]. Theriogenology, 162: 67-73. [15] He Q, Huang M, Cao X, et al.2022. Advancements in mammalian X and Y sperm differences and sex control technology[J]. Zygote, 30(4): 423-430. [16] He Q, Wu S, Gao F, et al.2023. Diluent pH affects sperm motility via GSK3 α/β-hexokinase pathway for the efficient enrichment of X-sperm to increase the female kids rate of dairy goats[J]. Theriogenology, 201: 1-11. [17] He Q, Wu S, Huang M, et al.2021. Effects of diluent pH on enrichment and performance of dairy goat X/Y sperm[J]. Frontiers in Cell and Developmental Biology, 9:747722. [18] Hou Y, Peng J, Hong L, et al.2024. Gender control of mouse embryos by activation of TLR7/8 on X sperm via ligands dsRNA-40 and dsRNA-DR[J]. Molecules, 29(1) :262. [19] Huang S, Ye L, Chen H.2017. Sex determination and maintenance: The role of DMRT1 and FOXL2[J]. Asian Journal of Andrology, 19(6): 619-624. [20] Husna A U, Azam A, Qadeer S, et al.2022. Pregnancy and calving rates improved using modified swim-up method for buffalo semen sexing[J]. Reproduction in Domestic Animals, 57(7): 798-801. [21] Ishijima S A, Okuno M, Mohri H.1991. Zeta potential of human X-and Y-bearing sperm[J]. International Journal of Andrology, 14(5): 340-347. [22] Khamlor T, Pongpiachan P, Sangsritavong S, et al.2014. Determination of sperm sex ratio in bovine semen using multiplex real-time polymerase chain reaction[J]. Asian-Australasian Journal of Animal Science, 27(10): 1411-1416. [23] Kodrič K, Zupan J, Kranjc T, et al.2019. Sex-determining region Y (SRY) attributes to gender differences in rankl expression and incidence of osteoporosis[J]. Experimental and Molecular Medicine, 51(8): 1-16. [24] Lepine S, McDowell S, Searle L M, et al.2019. Advanced sperm selection techniques for assisted reproduction[J]. Cochrane Database of Systematic Reviews, 7(7): CD010461. [25] Li X Y, Mei J, Ge C T, et al.2022. Sex determination mechanisms and sex control approaches in aquaculture animals[J]. Science China-Life Sciences, 65(6): 1091-1122. [26] Li Y H, Chen T M, Huang B M, et al.2020. FGF9 is a downstream target of SRY and sufficient to determine male sex fate in ex vivo XX gonad culture[J]. Biology of Reproduction, 103(6): 1300-1313. [27] Li Y, Chen Z, Liu H, et al.2021. ASER: Animal sex reversal database[J]. Genomics Proteomics & Bioinformatics, 19(6): 873-881. [28] Libert C, Dejager L, Pinheiro I.2010. The X chromosome in immune functions: When a chromosome makes the difference[J]. Nature Reviews Immunology, 10(8): 594-604. [29] Naniwa Y, Sakamoto Y, Toda S, et al.2019. Bovine sperm sex-selection technology in Japan[J]. Reproductive Medicine and Biology, 18(1): 17-26. [30] Oyeyipo I P, van der Linde M, du Plessis S S.2017. Environmental exposure of sperm sex-chromosomes: A gender selection technique[J]. Toxicological Research, 33(4):315-323. [31] Pozdyshev D V, Kombarova N A, Muronetz V I.2023. Biochemical features of X or Y chromosome-bearing spermatozoa for sperm sexing[J]. Biochemistry-moscow, 88(5): 655-666. [32] Quelhas J, Pinto-Pinho P, Lopes G, et al.2023. Sustainable animal production: Exploring the benefits of sperm sexing technologies in addressing critical industry challenges[J]. Frontiers in Veterinary Science, 10: 1181659. [33] Rahman M S, Pang M G.2019. New biological insights on X and Y chromosome-bearing spermatozoa[J]. Frontiers in Cell and Developmental Biology, 7: 388. [34] Rath D, Barcikowski S, de Graaf S, et al.2013. Sex selection of sperm in farm animals: Status report and developmental prospects[J]. Reproduction, 145(1): R15-R30. [35] Rath D, Tiedemann D, Gamrad L, et al.2015. Sex-sorted boar sperm-an update on related production methods[J]. Reproduction in Domestic Animals, 50(Suppl 2): 56-60. [36] Ren F, Xi H, Ren Y, et al.2021. TLR7/8 signalling affects X-sperm motility via the GSK3 α/β-hexokinase pathway for the efficient production of sexed dairy goat embryos[J]. Journal of Animal Science and Biotechnology, 12(1): 89. [37] Seidel G J.2014. Update on sexed semen technology in cattle[J]. Animal, 8(Suppl 1): 160-164. [38] Sharma V, Verma A K, Sharma P, et al.2022. Differential proteomic profile of X-and Y-sorted Sahiwal bull semen[J]. Research in Veterinary Science, 144: 181-189. [39] Sharpe J C, Evans K M.2009. Advances in flow cytometry for sperm sexing[J]. Theriogenology, 71(1): 4-10. [40] Shen D, Zhou C, Cao M, et al.2021. Differential membrane protein profile in bovine X-and Y-sperm[J]. Journal of Proteome Research, 20(6): 3031-3042. [41] Sringarm K, Thongkham M, Mekchay S, et al.2022. High-efficiency bovine sperm sexing used magnetic-activated cell sorting by coupling scfv antibodies specific to Y-chromosome-bearing sperm on magnetic microbeads[J]. Biology-Basel, 11(5): 715. [42] Thongkham M, Saenjaiban A, Jantanasakulwong K, et al.2024. New insights from poly-lactic acid and ionomer films coupled with recombinant antibodies for processing sexed-sorting bovine sperm[J]. International Journal of Biological Macromolecules, 256(Pt 1): 128425. [43] Ul-Husna A, Awan M A, Mehmood A, et al.2017. Sperm sexing in Nili-Ravi buffalo through modified swim up: Validation using SYBR green real-time PCR[J]. Animal Reproduction Science, 182: 69-76. [44] Umehara T, Tsujita N, Shimada M.2019. Activation of Toll-like receptor 7/8 encoded by the X chromosome alters sperm motility and provides a novel simple technology for sexing sperm[J]. PLOS Biology, 17(8): e3000398. [45] Umehara T, Tsujita N, Zhu Z, et al.2020. A simple sperm-sexing method that activates TLR7/8 on X sperm for the efficient production of sexed mouse or cattle embryos[J]. Nature Protocols, 15(8): 2645-2667. [46] Wen F, Liu W, Li Y, et al.2023. TLR7/8 agonist (R848) inhibit bovine X sperm motility via PI3K/GSK3α/β and PI3K/NFκB pathways[J]. International Journal of Biological Macromolecules, 232: 123485. [47] Xie Y, Xu Z, Wu Z, et al.2020. Sex manipulation technologies progress in livestock: A review[J]. Frontiers in Veterinary Science, 7: 481. [48] Yanagimachi R.2022. Mysteries and unsolved problems of mammalian fertilization and related topics[J]. Biology of Reproduction, 106(4): 644-675. [49] Yetunde I, Vasiliki M.2013. Effects of advanced selection methods on sperm quality and ART outcome[J]. Minerva Ginecologica, 65(5): 487-496. |
|
|
|