Polymorphism of GAB1 Gene in Hu Sheep (Ovis aries) and Its Association Analysis with Body Size Traits
ZHANG Jian1, WANG Wei-Min2, TIAN Hui-Bin2, ZHAO Li-Ming2, YANG Xiao-Bin2, MA Zong-Wu2, KONG De-Wen1, CAO Pei-Liang1, LI Hong-Jian1, LI Lin-Ting1, JIA Guo-Xing1, ZHANG Xiao-Xue1,*
1 College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; 2 College of Grassland Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract:Growth factor receptor-bound protein 2 (GRB2)-associated binding protein 1 (GAB1) is an adaptor protein that plays a role in the intracellular signaling cascade triggered by activated receptor type kinases. It plays an important role in maintaining the functional integrity of osteoblasts. The aim of this study was to analyze the association between single nucleotide polymorphisms (SNP) of GAB1 gene and body size traits in Hu sheep (Ovis aries). A total of 506 healthy Hu sheep with clear pedigree, accurate experimental data records and physical fitness were selected as the experimental subjects. Three genotypes (CC, TC and TT) of g.14514496 T>C polymorphism in exon 5 of GAB1 gene were detected by PCR amplification and AQPTM genotyping. The general linear model was used to analyze the association between body size traits and genotypes of sheep GAB1 gene. qPCR was used to detect the expression level of GAB1 gene in different tissues of Hu sheep. The result showed that sheep GAB1 gene was widely expressed in various tissues of Hu sheep, and its expression level was the highest in the rumen. The results of association analysis showed that this polymorphic locus was significantly associated with body height, body length and chest circumference of Hu sheep (P<0.05). For individuals carrying CC genotype, the body height of 140, 160 and 180 d of age, and the body length 160 and 180 d of age, and the chest circumference at 120 and 160 d of age were significantly higher than those of individuals carrying TT genotype (P<0.05), which suggested that GAB1 g.14514496 T>C might affect the body size traits of Hu sheep. Therefore, this locus can be used as a potential molecular marker. This study provides theoretical support for breeding studies of Hu sheep.
张健, 王维民, 田慧彬, 赵利明, 杨晓斌, 马宗武, 孔得文, 曹佩亮, 李泓舰, 李林庭, 贾国星, 张小雪. 湖羊GAB1基因多态性及其与体尺性状的关联分析[J]. 农业生物技术学报, 2025, 33(5): 1053-1062.
ZHANG Jian, WANG Wei-Min, TIAN Hui-Bin, ZHAO Li-Ming, YANG Xiao-Bin, MA Zong-Wu, KONG De-Wen, CAO Pei-Liang, LI Hong-Jian, LI Lin-Ting, JIA Guo-Xing, ZHANG Xiao-Xue. Polymorphism of GAB1 Gene in Hu Sheep (Ovis aries) and Its Association Analysis with Body Size Traits. 农业生物技术学报, 2025, 33(5): 1053-1062.
[1] 程江博, 张德印, 张煜坤, 等. 2022. 湖羊CNTF基因组织表达、SNPs扫描及其与生长性状关联分析[J].农业生物技术学报, 30(3): 506-516. (Cheng J B, Zhang D Y, Zhang Y K, et al.2022. Tissue expression, SNPs scanning of CNTF gene and its association with growth traits in Hu sheep (Ovis aries)[J]. Journal of Agricultural Biotechnology, 30(3): 506-516.) [2] 季久秀, 张春峰, 潘章源, 等. 2023. 杜寒杂交羊四个候选基因多态性与体尺性状的关联分析[J]. 黑龙江畜牧兽医,(01): 42-48+53. [3] 冉亮东, 吴建平, 郎侠, 等. 2021. 引入肉羊品种与湖羊杂交的屠宰性能、肉品质及血液生化指标比较研究[J]. 畜牧与兽医, 53(4): 28-31. (Ran L D, Wu J P, Lang X, el al.2021. Comparative study of the slaughter performance, meat quality and blood biochemical indexes of hybrid imported mutton sheep × Hu sheep[J]. Animal Husbandry&Veterinary Medicine, 53(4): 28-31.) [4] 苏睿, 林峻, 陈鲤群, 等. 2019. 高通量自动化SNP检测技术研究进展[J]. 中国细胞生物学学报, 41(7): 1412-1422. (Su R, Lin J, Chen L Q, el al, 2019. Research progress on high-throughput automated SNP detection technology[J]. Chinese Journal of Cell Biology, 41(7): 1412-1422.) [5] 孙国权, 高树新, 吴慧光, 等. 2014. 解偶联蛋白1、2和3基因在中国西门塔尔牛组织器官中的表达水平及其与胴体品质关系分析[J].华北农学报, 29(4): 116-120. (Sun G Q, Gao S X, Wu H G, el al, 2014. Analyze the ucp1, ucp2, ucp3 genes expression level in tissues organs and the relationship with the carcass traits in Chinese Simmental cattle[J]. Acta Agriculturae Boreali-sinica, 29(4): 116-120.) [6] 王晨阳, 王璐, 张锐虎, 等. 2019. SNP标记在动物遗传育种及人类疾病动物模型研究中的应用[J]. 中国比较医学杂志, 29(4): 120-125. (Wang C Y, Wang L, Zhang R H, el al, 2019. Application of single nucleotide polymorphism markers in animal genetic breeding and animal models of disease[J]. Chinese Journal of Comparative Medicine, 29(4): 120-125.) [7] 王苏皖, 冯小芳, 佟丽佳, 等. 2024. 安格斯牛断奶阶段生长发育性状的遗传参数估计[J]. 中国畜牧兽医, 51(6): 2517-2523. (Wang S W, Feng X F, Tong L J, el al.2024. Genetic parameter estimation of growth and dvelopmental traits in angus cattle during weaning stage[J]. China Animal Husbandry&Veterinary Medicine, 51(6): 2517-2523.) [8] 王伟萍, 郭建乐, 孙旺斌, 2022. 湖羊的饲养管理技术[J]. 吉林畜牧兽医, 43(3): 90-91. (Wang W P, Guo J L, Sun W B, 2022. Feeding and management technology of Hu sheep[J]. Jilin Animal Husbandry and Veterinary Medicine, 43(3): 90-91.) [9] 翁土军. 2009. 利用成骨细胞特异性基因敲除小鼠模型研究Pten和Gab1在骨稳态过程中的功能[D]. 博士毕业论文, 中国人民解放军军事医学科学院, 导师: 杨晓, pp.54-57. (Weng T J.2009. The studies on function of Pten and Gab1 in bone homeostasis using osteoblast-specific gene knockout mice[D]. Thesis for Ph.D., Academy of Military Medical Sciences, Supervisor: Yang X, pp. 54-57.) [10] 杨菊清, 谢鹏贵, 波拉提·再耐力, 等. 2015. 湖羊夜食性的形成及在生产中的利用[J]. 黑龙江畜牧兽医, (20): 57-59. (Yang J Q, Xie P G, Bolat Z N L, el al. 2015. Formation of night eating habit of Hu sheep and its utilization in production[J]. Heilongjiang Animal Science and Veterinary Medicine, (20): 57-59.) [11] 杨晓峰, 李咏红. 2022. 舍饲湖羊养殖技术[J]. 养殖与饲料, 21(10): 69-71. (Yang X F, Li Y H.2022. Breeding technology of sheet-fed Hu sheep[J]. Animals Breeding and Feed. 21(10): 69-71.) [12] 张顺法. 1981. 青浦湖羊的体形外貌和生产性能[J].上海农业科技,(3): 28. (Zhang S F. 1981. Body appearance and performance of Qingpu Hu sheep[J]. Shanghai Agricultural Science and Technology, (03): 28.) [13] 赵杰, 游新勇, 徐贞贞, 等. 2018. SNP检测方法在动物研究中的应用[J]. 农业工程学报, 34(4): 299-305. (Zhao J, You X Y, Xu Z Z, el al.2018. Application of SNP detection methods in animal studies[J]. Transactions of the Chinese Society of Agricultural Engineering, 34(4): 299-305.) [14] Aasrum M, Ødegård J, Sandnes D, et al.2013. The involvement of the docking protein Gab1 in mitogenic signalling induced by EGF and HGF in rat hepatocytes[J]. Biochimica et Biophysica Acta, 1833(12): 3286-3294. [15] Bard-chapeau E A, Hevener A L, Long S, et al.2005. Deletion of Gab1 in the liver leads to enhanced glucose tolerance and improved hepatic insulin action[J]. Nature Medicine, 11(5): 567-571. [16] Barrow-Mcgee R, Kermorgant S.2014. Met endosomal signalling: In the right place, at the right time[J]. The International Journal of Biochemistry & Cell Biology, 49: 69-74. [17] Bentires-Alj M, Gil S G, Chan R, et al.2006. A role for the scaffolding adapter GAB2 in breast cancer[J]. Nature Medicine, 12(1): 114-121. [18] Chamary J V, Parmley J L, Hurst L D.2006. Hearing silence: Non-neutral evolution at synonymous sites in mammals[J]. Nature Reviews Genetics, 7(2): 98-108. [19] Chaney J L, Clark P L.2015. Roles for synonymous codon usage in protein biogenesis[J]. Annual Review of Biophysics, 44: 143-166. [20] Chen C H, Li B J, Gu X H, et al.2019. Marker-assisted selection of YY supermales from a genetically improved farmed tilapia-derived strain[J]. Zoological Research, 40(2): 108-112. [21] Dementieva N V, Shcherbakov Y S, Tyshchenko V I, et al.2022. Comparative analysis of molecular RFLP and SNP markers in assessing and understanding the genetic diversity of various chicken breeds[J]. Genes (Basel), 13(10): 1876. [22] Gu H, Neel B G.2003. The "Gab" in signal transduction[J]. Trends in Cell Biology, 13(3): 122-130. [23] Higgins M G, Kenny D A, Fitzsimons C, et al.2019. The effect of breed and diet type on the global transcriptome of hepatic tissue in beef cattle divergent for feed efficiency[J]. BMC Genomics, 20(1): 525. [24] Horodyska J, Hamill R M, Reyer H,et al.2019. RNA-seq of liver from pigs divergent in feed efficiency highlights shifts in macronutrient metabolism, hepatic growth and immune response[J]. Frontiers in Genetics,10: 117. [25] Itoh M, Yoshida Y, Nishida K, et al.2000. Role of Gab1 in heart, placenta, and skin development and growth factor- and cytokine-induced extracellular signal-regulated kinase mitogen-activated protein kinase activation[J]. Molecular and Cellular Biology, 20(10): 3695-3704. [26] Kizu T, Yoshida Y, Furuta K, et al.2015. Loss of Gab1 adaptor protein in hepatocytes aggravates experimental liver fibrosis in mice[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 308(7): G613-624. [27] Komar A A.2007. Silent SNPs: Impact on gene function and phenotype[J]. Pharmacogenomics, 8(8): 1075-1080. [28] Kushanov F N, Turaev O S, Ernazarova D K, et al.2021. Genetic diversity, QTL mapping, and marker-assisted selection technology in cotton (Gossypium spp.)[J]. Frontiers in Plant Science, 12: 779386. [29] Lemarié C A, Lehoux S.2011. The gift of Gab1 (Grb-2-associated binder 1)[J]. Arteriosclerosis Thrombosis and Vascular Biology, 31(5): 956-957. [30] Liu Y, Rohrschneider L R.2002. The gift of Gab[J]. FEBS Letters, 515(1-3): 1-7. [31] Nguyen L, Holgado-madruga M, Maroun C, et al.1997. Association of the multisubstrate docking protein Gab1 with the hepatocyte growth factor receptor requires a functional Grb2 binding site involving tyrosine1356[J]. Journal of Biological Chemistry, 272(33): 20811-20819. [32] Ogata N, Chikazu D, Kubota N, et al.2000. Insulin receptor substrate-1 in osteoblast is indispensable for maintaining bone turnover[J]. Journal of Clinical Investigation, 105(7): 935-943. [33] Wang S Y, Cheng Y Y, Liu S C, et al.2021. A synonymous mutation in IGF-1 impacts the transcription and translation process of gene expression[J]. Molecular Therapy-Nucleic Acids, 26: 1446-1465. [34] Weidner K M, Di Cesare S, Sachs M, et al.1996. Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis[J]. Nature, 384(6605): 173-176. [35] Weng T, Mao F, Wang Y, et al.2010.Osteoblastic molecular scaffold Gab1 is required for maintaining bone homeostasis[J]. Journal of Cell Science, 123(pt5): 682-689. [36] Zhai Z, Luo Q, Chen Y, et al.2023. Impact of polyacrylamide supplementation on intake, nutrient digestion and growth of lambs[J]. PLOS ONE, 18(4): e0284509. [37] Zhang T, Gao H, Sahana G, et al.2019. Genome-wide association studies revealed candidate genes for tail fat deposition and body size in the Hulun Buir sheep[J]. Journal of Animal Breeding and Genetics, 136(5): 362-370.