Identification of PeACO Gene Family and Expression Analysis After Culm Sheath Removal in Phyllostachys edulis
LI Qi-Min1, LAN Zhi-Xin1, ZHU Wei-Wei1, LI Xiang-Yu1, WU Ai-Min2, LIN Xin-Chun1,*
1 State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; 2 College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
Abstract:1-aminocyclopropane-1-carboxylate oxidase (ACO) is one of the key rate limiting enzymes in the ethylene synthesis process. In this study, genome-wide identification and expression analysis of the PeACO gene family were performed in order to investigate the effects of PeACOs on the lignification process of moso bamboo (Phyllostachys edulis) stalks. In this study, 11 sequences of PeACOs with complete 2OG-FeII_Oxy structural domains were identified in the moso bamboo genome by sequence comparison with ACO genes in rice (Oryza sativa); Physicochemical analysis of the proteins showed that these genes encoded 304~445 amino acids, and the molecular weights of the proteins ranged from 34 105.83 to 49 417.78 D, evolutionary relationship and gene structure analyses showed that pairs of genes in the same branch were highly conserved at the gene structure and protein levels. The collinearity analysis showed that ACO gene family had 6 co-linear gene pairs in moso bamboo, and suggested that genome replication events had an important effect on the expansion of the number of PeACOs genes. PeACOs were expressed in all tissues of moso bamboo, and the highest abundance was especially found in shoots during the rapid growth period. The removal of bamboo clum sheath during the rapid growth period led to the deepening of lignification of the culm. And the expression analysis showed that most PeACOs genes were significantly upregulated by the removal of bamboo sheaths, and indicated that these genes played an important role in this process, and the gene pairs with similar structures have similar expression patterns. This study provides theoretical basis for further study on the function of ACO gene family of bamboo.
李其旻, 兰智鑫, 朱唯玮, 李翔宇, 吴蔼民, 林新春. 毛竹PeACO基因家族鉴定及箨鞘剥除后的表达分析[J]. 农业生物技术学报, 2025, 33(1): 55-67.
LI Qi-Min, LAN Zhi-Xin, ZHU Wei-Wei, LI Xiang-Yu, WU Ai-Min, LIN Xin-Chun. Identification of PeACO Gene Family and Expression Analysis After Culm Sheath Removal in Phyllostachys edulis. 农业生物技术学报, 2025, 33(1): 55-67.
[1] 柴孟竹, 李钊, 秦东玲, 等. 2017. 乙烯利对玉米茎秆抗倒伏性的调控效应[J]. 玉米科学, 25(06): 63-72. (Chai M Z, Li Z, Qin D L, et al.2017. Effect of ethephon on lodging resistance of maize stem[J]. Journal of Maize Sciences, 25(06): 63-72.) [2] 方伟, 邹云. 1989. 竹子矮化与盆栽技艺[J]. 浙江林业科技, 9(02): 32-39. (Fan W, Zhou Y.2019. The dwarf and pot cultivation techniques of bamboos[J]. Journal of Zhejiang Forestry Science and Technology, 9(02): 32-39.) [3] 李唐吉, 王懋林, 曹颖, 等. 2021. 竹笋期竹箨和笋体的日间蒸腾特性及其对水分运输的影响[J]. 植物生态学报, 45(12): 1365-1379. (Li T J, Wang M L, Cao Y, et al.2021. Diurnal transpiration of bamboo culm and sheath and their potential effects on water transport during the bamboo shoot stage[J]. Chinese Journal of Plant Ecology, 45(12): 1365-1379.) [4] 李亚敏. 2019. 乙烯吸收剂处理可有效改善蓝莓果实的储存效果[J]. 基因组学与应用生物学, 38(12): 5574-5580. (Li Y M.2019. Ethylene absorbent can effectively improve the storage effect of blueberry fruit[J]. Genomics and Applied Biology, 38(12): 5574-5580.) [5] 桂毅杰, 王晟, 全丽艳, 等. 2007. 毛竹基因组大小和序列构成的比较分析[J]. 中国科学(C辑:生命科学), 37(004): 488-492. (Gui Y J, Wang S, Quan L Y, et al.2007. Genome size and sequence composition of moso bamboo: A comparative study[J]. Science in China (Series C, Life sciences), 37(004): 488-492.) [6] 顾大路, 王伟中, 王红军, 等. 2003. 乙烯利在水稻中后期应用的效果研究[J]. 江苏农业科学, (05): 26-28. (Gu D L, Wang W Z, Wang H J, et al. 2003. Study on the effect of ethylene glycol applied in rice at mid- and late-stages[J]. Jiangsu Agricultural Sciences, (05): 26-28.) [7] 唐宇其, 颜彦, 李美英, 等. 2021. 粉蕉MbACO2基因克隆及其表达分析[J]. 南方农业学报. 52(1): 155-162. (Tang Y Q, Yan Y, Li M Y, et al.2021. Cloning and expression analysis of MbACO2 gene in Musa ABB group, cvPisang Awak, F[J][J]. Journal of Southern Agriculture, 52(1): 155-162.) [8] 卫晓轶, 张明才, 张燕, 等. 2011. 乙烯利对不同基因型玉米节间伸长和内源激素的影响[J]. 农药学学报, 13(05): 475-479. (Wei X Y, Zhang M C, Zhang Y, et al.2011. Effects of ethephon on internode elongation and endogenous hormones in different genotypes of maize[J]. Chinese Journal of Pesticide Science, 13(05): 475-479.) [9] 文廷刚, 王伟中, 杨文飞, 等. 2020. 水稻茎秆形态特征与抗倒伏能力对外源植物生长调节剂的响应差异[J]. 南方农业学报, 51(01): 48-55. (Wen T G, Wang W Z, Yang W F, et al.2020. Morphological characteristics and lodging resistance of rice stems and its response to exogenous plant growth regulators[J]. Journal of Southern Agriculture, 51(01): 48-55.) [10] 于健. 2020. 乙烯参与外源钙诱导盐胁迫条件下黄瓜外植体不定根发生机理研究[D]. 博士学位论文, 甘肃农业大学, 导师: 郁继华, pp. 20-21. (Yu J.2020. The mechanism research of ethylene was involved in Ca2+ induced adventitious rooting of cucumber explants under salt stress[D]. Thesis for Ph.D., Gansu Agricultural University, Supervisor: Yu J H, pp. 20-21.) [11] 张齐生, 关明杰, 纪文兰. 2002. 毛竹材质生成过程中化学成分的变化[J]. 南京林业大学学报(自然科学版), 26(02): 7-10. (Zhang Q S, Guan M J, Ji W L.2002. Variation of moso bamboo chemical compositions during mature growing period[J]. Journal of Nanjing Forestry University (Natural Sciences Editon), 26(02): 7-10.) [12] Andersson-Gunnerås S, Hellgren J M, Björklund S, et al.2003. Asymmetric expression of a poplar ACC oxidase controls ethylene production during gravitational induction of tension wood[J]. The Plant Journal, 34(3): 339-349. [13] Babula D, Misztal L H, Jakubowicz M, et al.2006. Genes involved in biosynthesis and signalisation of ethylene in Brassica oleracea and Arabidopsis thaliana: Identification and genome comparative mapping of specific gene homologues[J]. Theoretical and Applied Genetics, 112(3): 410-420. [14] Barakate A, Stephens J, Goldie A, et al.2011. Syringyl lignin is unaltered by severe sinapyl alcohol dehydrogenase suppression in tobacco[J]. The Plant Cell, 23(12): 4492-4506. [15] Bhowmik P K, Matsui T.2005. Ethylene biosynthetic genes in 'Moso' bamboo shoot in response to wounding[J]. Postharvest Biology and Technology, 38(2): 188-194. [16] Carocha V, Soler M, Hefer C, et al.2015. Genome-wide analysis of the lignin toolbox of Eucalyptus grandis[J]. The New Phytologist, 206(4): 1297-1313. [17] Chen M, Guo L, Ramakrishnan M, et al.2022. Rapid growth of moso bamboo (Phyllostachys edulis): Cellular roadmaps, transcriptome dynamics, and environmental factors[J]. The Plant Cell, 34(10): 3577-3610. [18] Chen M, Ju Y, Ahmad Z, et al.2021. Multi-analysis of sheath senescence provides new insights into bamboo shoot development at the fast growth stage[J]. Tree Physiology, 41(3): 491-507. [19] Chen C, Wu Y, Li J, et al.2023. TBtools-II: A 'One for All, All for One' bioinformatics platform for biological big-data mining[J]. Molecular Plant, 16(11): 1733-1742. [20] Cui K, He C Y, Zhang J G, et al.2012. Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo[J]. Journal of Proteome Research 11(4): 2492-2507. [21] Fan C J, Ma J M, Guo Q R, et al.2013. Selection of reference genes for quantitative real-time PCR in bamboo (Phyllostachys edulis)[J]. PLOS ONE, 8(2): e56573. [22] Gao Z M, Li X P, Li L B, et al.2006. An effective method for total RNA isolation from bamboo[J]. Chinese Forestry Science and Technology, 5(3): 52-54. [23] Guo Z H, Ma P F, Yang G Q, et al.2019. Genome sequences provide insights into the reticulate origin and unique traits of woody bamboos[J]. Molecular Plant, 12(10): 1353-1365. [24] Iwai T, Miyasaka A, Seo S, et al.2006. Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants[J]. Plant Physiology, 142(3): 1202-1215. [25] Iwamoto M, Baba-Kasai A, Kiyota S, et al.2010. ACO1, a gene for aminocyclopropane-1-carboxylate oxidase: Effects on internode elongation at the heading stage in rice[J]. Plant, Cell & Environment, 33(5): 805-815. [26] Kato M, Hayakawa Y, Hyodo H, et al.2000. Wound-induced ethylene synthesis and expression and formation of 1-aminocyclopropane-1-carboxylate (ACC) synthase, ACC oxidase, phenylalanine ammonia-lyase, and peroxidase in wounded mesocarp tissue of Cucurbita maxima[J]. Plant & Cell Physiology, 41(4): 440-447. [27] Laurichesse S, Avérous L.2014, Chemical modification of lignins: Towards biobased polymers[J]. Progress in Polymer Science, 39(7): 1266-1290. [28] Li X Y, Li J, Cai M M, et al.2020. Identification and evolution of the WUSCHEL-related homeobox protein family in Bambusoideae[J]. Biomolecules, 10(5): 739. [29] Lin Z, Zhong S, Grierson D, et al.2009. Recent advances in ethylene research[J]. Journal of Experimental Botany, 60(12): 3311-3336. [30] Luo Z S, Feng S M, Pang J, et al.2012. Effect of heat treatment on lignification of postharvest bamboo shoots (Phyllostachys praecox f. prevernalis)[J]. Food Chemistry, 135(4): 2182-2187. [31] Love J, Björklund S, Vahala J, et al.2009. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus[J]. Proceedings of the National Academy of Sciences of the USA, 106(14): 5984-5989. [32] Maarten H, Van de Poel B.2019. 1-aminocyclopropane-1-carboxylic acid oxidase (ACO): The enzyme that makes the plant hormone ethylene[J]. Frontiers in Plant Science, 10: 695. [33] Mottiar Y, Vanholme R, Boerjan W, et al.2016. Designer lignins: Harnessing the plasticity of lignification[J]. Current Opinion in Biotechnology, 37: 190-200. [34] Niu L Z, Xu W, Ma P F.2022. Single-base methylome analysis reveals dynamic changes of genome-wide DNA methylation associated with rapid stem growth of woody bamboos[J]. Planta, 256(3): 53. [35] Peng H P, Lin T Y, Wang N N, et al.2005. Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia[J]. Plant Molecular Biology, 58(1): 15-25. [36] Peng Z, Lu Y, Li L, et al.2013. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla)[J]. Nature Genetics, 45(4): 456-461. [37] Rasheed M, Jawaid M, Parveez B, et al.2020. Morphological, chemical and thermal analysis of cellulose nanocrystals extracted from bamboo fibre[J]. International Journal of Biological Macromolecules, 160: 183-191. [38] Schellingen K, Van Der Straeten D, Vandenbussche F, et al.2014. Cadmium-induced ethylene production and responses in Arabidopsis thaliana rely on ACS2 and ACS6 gene expression[J]. BMC Plant Biology, 14: 214. [39] Smith C J, Slater A, Grierson D.1986. Rapid appearance of an mRNA correlated with ethylene synthesis encoding a protein of molecular weight 35000[J]. Planta, 168(1): 94-100. [40] Siddikee M A, Chauhan P S, Sa T.2012. Regulation of ethylene biosynthesis under salt stress in red pepper (Capsicum annuum L.) by 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing halo tolerant bacteria[J]. Journal of Plant Growth Regulation, 31(2): 265-272. [41] Soreng R J, Peterson P M, Zuloaga F O, et al.2022. A worldwide phylogenetic classification of the Poaceae (Gramineae) III: An update[J]. Systematics and Evolution 60(3): 476-521. [42] Stéphanie L, Luc A, 2014. Chemical modification of lignins: Towards biobased polymers[J]. Progress in Polymer Science, 39(7): 1266-1290. [43] Van de Poel B, Van Der Straeten D.2014. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: More than just the precursor of ethylene![J]. Frontiers in Plant Science, 5: 640. [44] Vandenbussche F, Vriezen W H, Smalle J, et al.2003. Ethylene and auxin control the Arabidopsis response to decreased light intensity[J]. Plant Physiology, 133(2): 517-527. [45] Vandenbussche F, Vaseva I, Vissenberg K, et al.2012. Ethylene in vegetative development: A tale with a riddle[J]. The New Phytologist, 194(4): 895-909. [46] Wang S G, Zhan H, Li P C, et al.2020. Physiological mechanism of internode bending growth after the excision of shoot sheath in Fargesia yunnanensis and its implications for understanding the rapid growth of bamboos[J]. Frontiers in Plant Science, 11: 418. [47] Xie J, Chen Y, Cai G, et al.2023. Tree visualization by one table (tvBOT): A web application for visualizing, modifying and annotating phylogenetic trees[J]. Nucleic Acids Research, 51(W1): W587-W592. [48] Zeng F F, Luo Z S, Xie J W, et al.2015. Gamma radiation control quality and lignification of bamboo shoots (Phyllostachys praecox f. prevemalis) stored at low temperature[J]. Postharvest Biology and Technology, 102: 17-24. [49] Zhao H S, Gao Z M, Wang L, et al.2018. Chromosome-level reference genome and alternative splicing 35718 atlas of moso bamboo (Phyllostachys edulis)[J]. GigaScience, 7(10): 1-12. [50] Zhong R Q, Morrison W H, Himmelsbach D S, et al.2000. Essential role of caffeoyl coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants[J]. Plant Physiology, 124(2): 563-578.