Screening and Validation of Reference Genes in Lyophyllum decastes by qRT-PCR
LIANG Li-Dan1, LI Hua-Jun1, LAN Yu-Fei3, ZANG Xi-Zhe1, LIN Jia-Long1, WEI Yong-Qi1, ZHANG Pei-Jin1, REN Peng-Fei2*, MENG Li1*
1 College of Plant Protection/Key Laboratory of Agricultural Microbiology of Shandong Province, Shandong Agricultural University, Tai'an 271018, China; 2 Institute of Agricultural Resource and Environment/Key Laboratory of Wastes Matrix Utilization, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan 250100, China; 3 Tai'an Academy of Agricultural Sciences, Tai'an 271000, China
Abstract:Choosing an appropriate internal reference gene is an essential requirement for qRT-PCR. However, Lyophyllum decastes has no internal reference genes reported. In this study, mycelia at different after-ripening times, fruiting bodies of different developmental stages and different cap morphologies were selected as the experimental materials. qRT-PCR was used to quantitatively amplify 6 commonly internal reference genes which were cytochrome c oxidase subunit 1 (Cox1), ATPase, glucose-6-phosphate isomerase (PGI), protein phosphatase 2A (PP2A), DNA-directed RNA polymerase subunit 2 (Rpb2), and ubiquitin-conjugating enzyme (UBC) and 4 rarely internal reference genes which were chaperonin containing TCP1, subunit 2 (CCT2), cytochrome b560 subunit (Cyb), 17 beta-hydroxysteroid dehydrogenase type 3 (HSD17B3) and copper/zinc superoxide dismutase (SODC). The stability of 10 internal reference genes were evaluated by ΔCt, geNorm, NormFinder, BestKeeper and RefFinder and validated by β-1,3-glucanases, which was the key enzyme in starch and sucrose metabolism. The results showed that HSD17B3 were the most stable gene in different after-ripening times and different developmental stages; Rpb2 was the most stable gene in different cap morphologies. However, PP2A was the most unstable gene in different after-ripening times and different cap morphologies samples. Moreover, PGI was the most unstable in different developmental stages. The study evaluate the stability of internal reference genes in L. decastes and expect to offer reference for researches about different stages and different cap morphologies in L. decastes.
[1] 戴玉成, 周丽伟, 杨祝良, 等, 2010. 中国食用菌名录[J]. 菌物学报, 29: 1-21. (Dai Y C, Zhou L W, Yang Z L, et al.2010. A revised checklist of edible fungi in China[J]. Mycosystema, 29: 1-21) [2] 戴玉成, 杨祝良, 崔宝凯, 等. 2021. 中国森林大型真菌重要类群多样性和系统学研究[J]. 菌物学报 40: 770-805. (Dai Y C, Yang Z L, Cui B K, et al.2021. Diversity and systematics of the important macrofungi in Chinese forests[J]. Mycosystema 40: 770-805) [3] 贾定洪, 王波. 2021. 实时定量 PCR 评估金针菇的内参基因稳定性[J]. 菌物学报, 40(7): 1700-1711. (Jia D H, Wang B.2021. Candidate reference gene stability of Flammulina filiformis evaluated by real-time quantitative reverse transcription PCR[J]. Mycosystema, 40(7): 1700-1711.) [4] 李立功. 2019. 荷叶离褶伞研究进展[J]. 中国林副特产, 1(1): 79-82. (Li L G.2019. Research progress on Lyophyllum decastes[J]. Forest by-Product and Speciality in China, 1(1): 79-82.) [5] 李敏奇, 闫兴富, 任玉锋, 等. 2023. 六盘山国家级自然保护区大型真菌多样性[J]. 菌物学报, 42(9): 1889-1905. (Li M Q, Yan X F, Ren Y F, et al.2023. Diversity of macrofungi in Liupanshan National Nature Reserve, Ningxia[J]. Mycosystema, 42(9): 1889-1905.) [6] 李文佼, 温世勇, 张洪勇, 等. 2022. 鹿茸菇研究进展[J]. 中国食用菌, 41(3): 1-5. (Li W J, Wen S Y, Zhang H Y, et al.2022. Research progress of Lyophyllum decastes[J]. Edible Fungi of China, 41(3): 1-5.) [7] 刘培培, 黄惠芸, 周天峰, 等. 2023. 荷叶离褶伞保鲜方法及其贮藏效果[J]. 菌物学报, 42(5): 1203-1218. (Liu P P, Huang H Y, Zhou T F, et al.2023. Fresh-keeping effects of preservation methods on Lyophyllum decastes[J]. Mycosystema, 42(5): 1203-1218.) [8] 苏强军, 夏樱霞, 谢放, 等. 2021. 冬虫夏草菌实时荧光定量 PCR 内参基因的筛选[J]. 菌物学报, 40(7): 1712-1722. (Su Q J, Xia Y X, Xie F, et al.2021. Screening of the reference genes for qRT-PCR analysis of gene expression in Ophiocordyceps sinensis[J]. Mycosystema, 40(7): 1712-1722.) [9] 孙渤洋, 武英达, 员瑗. 2023. 东北地区蒙古栎木生大型真菌物种多样性和区系特征[J]. 菌物学报, 42(1): 278-289. (Sun B Y, Wu Y D, Yuan Y.2023. Species diversity and floral characteristics of wood-inhabiting macrofungi growing on Quercus mongolica in Northeast China[J]. Mycosystema, 42(1): 278-289.) [10] 武晨剑, 袁学文, 宋淋浩, 等. 2021. 金针菇实时荧光定量PCR内参基因的筛选[J]. 食用菌学报, 28(1): 30-39. (Wu C J, Yuan X W, Song L H, et al.2021. Screening of Flammulina filiformis real-time PCR reference genes[J]. Acta Edulis Fungi, 28(1): 30-39.) [11] 席亚丽, 茆爱丽, 王晓琴, 等. 2010. 荷叶离褶伞子实体、菌丝体及发酵液蛋白质营养价值评[J]. 菌物学报, 29(4): 603-607. (Xi Y L, Mao A L, Wang X Q, et al.2010. Assessment for protein nutrition of fruit bodies, mycelia and fermentation broth of Lyophyllum decastes[J]. Mycosystema, 29(4): 603-607.) [12] 辛琪, Tom Hsiang, 李玉, 等. 2023. 吉林望天鹅自然保护区大型真菌多样性[J]. 菌物学报, 42(9): 1876-1888. (Xin Q, Hsiang T, Li Y, et al.2023. Species diversity of macrofungi in Wangtian'e Nature Reserve, Jilin Province[J]. Mycosystema, 42(9): 1876-1888.) [13] 闫慧文, 关体坤, 张国庆, 等. 2023. 皱环球盖菇实时荧光定量PCR内参基因的筛选[J]. 菌物学报, 42(6): 1298-1310. (Yan H W, Guan T K, Zhang G Q, et al.2023 Screening of the reference genes for quantitative real-time PCR analysis of gene expression in Stropharia rugosoannulata[J]. Mycosystema, 42(6): 1298-1310.) [14] 张越, 姚方杰, 孙文娟, 等. 2020. 黑木耳实时荧光定量 PCR 内参基因的筛选[J]. 菌物学报, 39(8): 1510-1519. (Zhang Y, Yao F J, Sun W J, et al.2020. Screening of reference genes for qRT-PCR amplification in Auricularia heimuer[J]. Mycosystema, 39(8): 1510-1519.) [15] 周琳琳, 赵玉, 李夏雨, 等. 2022. 蚁巢伞属真菌Termitomyces clypeatus实时荧光定量PCR内参基因的筛选[J]. 菌物学报, 41(10): 1597-1606. (Zhou L L, Zhao Y, Li X Y, et al.2022. Screening of the reference genes for RT-qPCR analysis of gene expressions in Termitomyces clypeatus[J]. Mycosystema, 41(10): 1597-1606.) [16] Andersen C L, Jensen J L, Ørntoft T F.2004. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization[J]. Applied to Bladder and Colon Cancer Data Sets. Cancer Research, 64(15): 5245-5250. [17] Bustin S A, Benes V, Garson J A, et al.2009. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments[J]. Clinical Chemistry, 55(4): 611-622. [18] Chen C, Yuan M, Song J, et al.2020. Genome-wide identification and testing of superior reference genes for transcript normalization during analyses of flesh development in Asian pear cultivars[J]. Scientia Horticulturae, 271: 109459. [19] Dheda K, Huggett J F, Bustin S A, et al.2004. Validation of housekeeping genes for normalizing RNA expression in real-time PCR[J]. BioTechniques, 37(1): 112-119. [20] Fernández-Fueyo E, Castanera R, Ruiz-Dueñas F J, et al.2014. Ligninolytic peroxidase gene expression by Pleurotus ostreatus: Differential regulation in lignocellulose medium and effect of temperature and pH[J]. Fungal Genetics and Biology, 72: 150-161 [21] Hu C M, Zhou C L, Wan J N, et al.2023. Selection and validation of internal control genes for quantitative real-time RT-qPCR normalization of Phlebopus portentosus gene expression under different conditions[J]. PLOS ONE, 18(9): e0288982. [22] Jain M, Nijhawan A, Tyagi AK, et al.2006. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR[J]. Biochemical and Biophysical Research Communications, 345(2): 646-651. [23] Jia D H, Wang B, Li X L, et al.2019.Validation of reference genes for quantitative gene expression analysis in Auricularia cornea[J]. Journal of Microbiological Methods, 163: 105658. [24] Lian T, Yang T, Liu G, et al.2014. Reliable reference gene selection for Cordyceps militaris gene expression studies under different developmental stages and media[J]. FEMS Microbiology Letters, 356(1): 97-104. [25] Løvdal T, Lillo C.2009. Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress[J]. Analytical Biochemistry, 387(2): 238-242. [26] Lu X, Liu Y, Zhao L, et al.2018. Selection of reliable reference genes for RT-qPCR during methyl jasmonate, salicylic acid and hydrogen peroxide treatments in Ganoderma lucidum[J]. World Journal of Microbiology and Biotechnology, 34(7): 92. [27] Nolan T, Hands R E, Bustin S A.2006. Quantification of mRNA using real-time RT-PCR[J]. Nature Protocols, 1(3): 1559-1582. [28] Pfaffl M W, Tichopad A, Prgomet C, et al.2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper-Excel-based tool using pair-wise correlations[J]. Biotechnology Letters, 26(6): 509-515. [29] Silver N, Best S, Jiang J, et al.2006. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR[J]. BMC Molecular Biology, 7: 33. [30] Sun X Y, Wu J Y, Mo C Y, et al.2019. Selection and validation of endogenous reference genes for RT-qPCR normalization in different stresses and tissues of the tiger milk mushroom, Pleurotus tuber-regium[J]. Mycoscience, 62: 281-288. [31] Tao Y, van Peer A F, Huang Q, et al.2016. Identification of novel and robust internal control genes from Volvariella volvacea that are suitable for RT-qPCR in filamentous fungi[J]. Scientific Reports, 6(1): 29236. [32] Tong Z G, Gao Z H, Wang F, et al.2009. Selection of reliable reference genes for gene expression studies in peach using real-time PCR[J]. BMC Molecular Biology, 10(1): 1-13. [33] Trapnell C, Hendrickson D G, Sauvageau M, et al.2013. Differential analysis of gene regulation at transcript resolution with RNA-seq[J]. Nature Biotechnology, 31(1): 46-53. [34] Vandesompele J, Preter K D, Pattyn F, et al.2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 3(7): 1-12. [35] VanGuilder H D, Vrana K E, Freeman W M.et al.2008. Twenty-five years of quantitative PCR for gene expression analysis[J]. Biotechniques, 44: 619-626. [36] Wu F, Zhou L W, Yang Z L, et al.2019. Resource diversity of Chinese macrofungi: Edible, medicinal and poisonous species[J]. Fungal Diversity, 98: 1-76. [37] Xiang Q J, Li J, Qin P, et al.2018. Identification and evaluation of reference genes for qRT-PCR studies in Lentinula edodes[J]. PLOS ONE, 13(1): e0190226. [38] Xie F L, Wang J Y, Zhang B H.2023. RefFinder: A web based tool for comprehensively analyzing and identifying reference genes[J]. Functional & Integrative Genomics, 23: 125. [39] Xu J, Xu Z C, Zhu Y J, et al.2014. Identification and evaluation of reference genes for qRT-PCR normalization in Ganoderma lucidum[J]. Current Microbiology, 68(1): 120-126. [40] Xu L L, Yang W J, Qiu Y M, et al.2023. Complete genome sequences and comparative secretomic analysis for the industrially cultivated edible mushroom Lyophyllum decastes reveals insights on evolution and lignocellulose degradation potential[J]. Frontiers in Microbiology, 14: 1137162.