Screening and Validation of Reference Genes for qPCR Analysis of Flower Color Synthesis Genes in Prunus mume
YE Yong1, Henry Lusekelo INGWE1, ZHENG Zi-Fei1, CHEN Ying-Zhi1, ZHAO Hong-Bo1,2, DONG Bin1,2,*
1 School of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China; 2 Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang A&F University, Hangzhou 311300, China
Abstract:Prunus mume, one of the top 10 traditional famous flowers in China, is widely used in gardens. With the development of molecular biology research of P. mume, it is very important to screen reference genes suitable for qPCR analysis of flower color synthesis genes in P. mume. In this study, a total of 6 P. mume cultivars of 3 different color lines were selected for flower color phenotypic analysis and anthocyanin content determination, and it was found that anthocyanin content was positively correlated with the color of P. mume petals. Meanwhile, the expression of 14 candidate reference genes was detected among different color varieties of P. mume using qPCR, and their expression stability was analyzed using 3 software (including geNorm, NormFinder, BestKeeper) and ΔCt method. Finally, the best reference gene was synthesized using the RefFinder program and validated using genes related to anthocyanin synthesis. The experimental results showed that the expression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and actin 1 (ACT1) were the most stable and ACT3 was the least stable. The validation results showed that when GAPDH and ACT1 were used as reference genes, the expression patterns of anthocyanin synthesis-related genes were similar, and more genes showed significant differential expression; when ACT3 was used as reference gene, the expression patterns of anthocyanin synthesis-related genes were different from the results of GAPDH and ACT1 as reference genes, and only a few genes showed significant differential expression. This study provides basic data for in-depth analysis of the expression patterns of genes related to flower color synthesis.
[1] 陈俊愉. 2001. 中国花卉品种分类学[M]. 北京: 中国林业出版社, pp. 100-101. (Cheng J Y.2001. Taxonomy of Chinese Flower Varieties[M]. China Forestry Publishing House, Beijing, China, pp. 100-101.) [2] 洪艳. 2016. 菊花花青素苷依光合成的分子机制[D]. 博士学位论文, 北京林业大学, 导师: 戴思兰, pp. 73-86. (Hong Y.2016. Molecular mechanism of light-dependant anthocyanin biosynthesis in Chrysanthemum × morifolium[D]. Thesis for Ph.D., Beijing Forestry University, Supervisor: Dai S L, pp. 73-86.) [3] 刘圆, 王丽鸳, 韦康, 等. 2016. 不同氮处理茶树实时定量PCR内参基因筛选和验证[J]. 茶叶科学, 36(01): 92-101. (Liu Y, Wang L Y, Wei K, et al.2016. Screening and validation of reference genes for quantitative real-time PCR analysis in tea plant (Camellia sinensis) under different nitrogen nutrition[J]. Journal of Tea Science, 36(01): 92-101.) [4] 李健. 2017. 芍药实时定量PCR内参基因的筛选和验证[J]. 分子植物育种, 15(07): 2544-2549. (Li J.2017. Selection and validation of reference genes for quantitative real-time PCR in Herbaceous peony[J]. Molecular Plant Breeding, 15(07): 2544-2549.) [5] 卢素文, 郑暄昂, 王佳洋, 等. 2021. 葡萄类黄酮代谢研究进展[J]. 园艺学报, 48(12): 2506-2524. (Lu S W, Zheng X N, Wang J Y, et al.2021. Research progress on the metabolism of flavonoids in grape[J]. Acta Horticulturae Sinica, 48(12): 2506-2524.) [6] 李永平, 叶新如, 王彬, 等. 2021. 黄秋葵实时荧光定量PCR内参基因的克隆与筛选评价[J]. 核农学报, 35(01): 60-71. (Li Y P, Ye X, Wang B, et al.2021. Cloning and selection evaluation of reference gene for quantitative real-time PCR in Hibicus esculentus L.[J]. Journal of Nuclear Agricultural Sciences, 35(01): 60-71.) [7] 覃慧娟, 范付华, 周紫晶. 2022. 激素处理下马尾松茎干组织qPCR内参基因的筛选[J]. 农业生物技术学报, 30(02): 393-401. (Tan H J, Fu F H, Zhou Z J.2022. Screening of qPCR internal reference genes in stem tissues of Pinus massoniana under hormine treatment[J]. Journal of Agricultural Biotechnology, 30(02): 393-401.) [8] 王彦杰, 陈叶清, 薛泽云, 等. 2017. 荷花花瓣着色过程实时荧光定量PCR内参基因的筛选及验证[J]. 南京农业大学学报, 40(03): 408-415. (Wang Y J, Chen Y, Xue Z Y, et al.2017. Selection and validation of reference genes for RT-qPCR normalization in lotus (Nelumbo nucifera) during petal coloration[J]. Journal of Nanjing Agricultural University, 40(03): 408-415.) [9] 王海峰. 2019. 红花草莓花色相关miRNA的鉴定与分析[D]. 硕士学位论文, 沈阳农业大学, 导师: 雷家军, pp. 31-33. (Wang H F.2019. Analysis and identification of miRNAs related to flower color in red-flowered strawberry[D]. Thesis for M.S., Shenyang Agricultural University, Supervisor: Lei J J, pp. 31-33.) [10] 徐凌云, 王俊丽, 周宜君. 2017. 喜盐鸢尾花色形成关键基因的克隆及表达分析[J]. 植物遗传资源学报, 18(02): 340-348. (Xu L Y, Wang J L, Zhou Y J.2017. Cloning and expression analysis of anthocyanin biosynthetic genes from Iris halophila (Iridaceae)[J]. Jouranl of Plant Genetic Resources, 18(02): 340-348.) [11] 杨婷, 薛珍珍, 李娜, 等. 2021. 铁十字秋海棠斑叶发育过程内参基因筛选及验证[J]. 园艺学报, 48(11): 2251-2261. (Yang T, Xue Z Z, Li N, et al.2021. Reference genes selection and validation in Begonia masoniana leaves of different developmental stages[J]. Acta Horticulturae Sinica, 48(11): 2251-2261.) [12] 赵昶灵, 郭维明, 陈俊愉. 2004. 梅花花色色素种类和含量的初步研究[J]. 北京林业大学学报, 26(02): 68-73. (Zhao C L, Guo W M, Chen J Y.2004. Preliminary study on the categories and contents of the flower color pigments of Prunus mume[J]. Journal of Beijing Forestry University, 26(02): 68-73.) [13] 张兰, 檀鹏辉, 滕珂, 等. 2017. 草地早熟禾荧光定量PCR分析中内参基因的筛选[J]. 草业学报, 26(03): 75-81. (Z L, Tan P H, Teng K, et al.2017. Screening of reference genes for real-time fluorescence quantitative PCR in Kentucky bluegrass[J]. Acta Prataculturae Sinica, 26(03): 75-81.) [14] 张秋悦, 刘昌来, 于晓晶, 等. 2022. 盐胁迫条件下杜梨叶片差异表达基因qRT-PCR内参基因筛选[J]. 园艺学报, 49(07): 1557-1570. (Zhang Q Y, Liu C L, Yu X J, et al.2022. Screening of reference genes for differentially expressed genes in Pyrus betulaefolia plant under salt stress by qRT-PCR[J]. Acta Horticulturae Sinica, 49(07): 1557-1570.) [15] Andersen C L, Jensen J L, Ørntoft T F.2004. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Research, 64(15): 5245-5250. [16] Bustin S.2002. INVITED REVIEW Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems[J]. Journal of Molecular Endocrinology, 29: 23-39. [17] Ding A, Bao F, Zhang T, et al.2020. Screening of optimal reference genes for qRT-PCR and preliminary exploration of cold resistance mechanisms in Prunus mume and Prunus sibirica varieties[J]. Molecular Biology Reports, 47: 6635-6647. [18] Fei X, Shi Q, Yang T, et al.2018. Expression stabilities of ten candidate reference genes for RT-qPCR in Zanthoxylum bungeanum Maxim[J]. Molecules, 23(4): 802. [19] Jin Y, Liu F, Huang W, et al.2019. Identification of reliable reference genes for qRT-PCR in the ephemeral plant Arabidopsis pumila based on full-length transcriptome data[J]. Scientific Reports, 9(1): 8408. [20] Li J, Han J, Hu Y, et al.2016. Selection of reference genes for quantitative real-time PCR during flower development in tree peony (Paeonia suffruticosa Andr.)[J]. Frontiers in Plant Science, 7: 516. [21] Li Y, Qu Y, Wang Y, et al.2019. Selection of suitable reference genes for qRT-PCR analysis of Begonia semperflorens under stress conditions[J]. Molecular Biology Reports, 46: 6027-6037. [22] Li X, Li P, Zheng T, et al.2022. Genomic insights into the important ornamental and stress resistance traits of Prunus mume[J]. Scientia Horticulturae, 302: 111179. [23] Ma P, Bian X, Jia Z, et al.2016. De novo sequencing and comprehensive analysis of the mutant transcriptome from purple sweet potato (Ipomoea batatas L.)[J]. Gene, 575(2): 641-649. [24] Ramakers C, Ruijter J M, Deprez R H L, et al.2003. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data[J]. Neuroscience Letters, 339(1): 62-66. [25] Riedel G, Rüdrich U, Fekete-Drimusz N, et al.2014. An extended ΔCT-method facilitating normalisation with multiple reference genes suited for quantitative RT-PCR analyses of human hepatocyte-like cells[J]. PLOS ONE, 9(3): e93031. [26] Vandesompele J, De Preter K, Pattyn F, et al.2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biology, 3(7): 1-12. [27] Wang T, Hao R, Pan H, et al.2014. Selection of suitable reference genes for quantitative real-time polymerase chain reaction in Prunus mume during flowering stages and under different abiotic stress conditions[J]. Journal of the American Society for Horticultural Science, 139(2): 113-122. [28] Xu J, Li J, Gao T.2022. Evaluation of reference genes for gene expression analysis in Eichhornia crassipes[J]. Sustainability, 14(17): 11071. [29] Yu Z, Zhang P, Lin W, et al.2019. Sequencing of anthocyanin synthesis-related enzyme genes and screening of reference genes in leaves of four dominant subtropical forest tree species[J]. Gene, 716: 144024. [30] Zheng T, Li P, Zhuo X, et al.2022. The chromosome-level genome provides insight into the molecular mechanism underlying the tortuous-branch phenotype of Prunus mume[J]. New Phytologist, 235(1): 141-156.