Establishment and Application of Real-time Quantitative PCR Detection System for the Pathogenic Fusarium oxysporum Causing Astragalus membranaceus var. mongholicus Root Rot
1 Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China; 2 Institute of the Industrial Crop, Shanxi Agricultural University, Taiyuan 030031, China; 3 Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
Abstract:Fusarium oxysporum is one of the dominant pathogens causing Astragalus membranaceus var. mongholicus (AMM) root rot. In order to rapidly and accurately detect and quantify F. oxysporum in AMM plants and soil, primers were designed based on the elongation factor-1α (EF-1α) sequence and verified for their specificity. The real-time quantitative PCR (qRT-PCR) detection system was established for the pathogen. The constructed qRT-PCR system was used to detect F. oxysporum in AMM plants and soil from AMM planting sites. The results showed that primer pair FaeF2/FaeR2 was highly specific, and the sensitivities of qRT-PCR detection were 0.896 pg/μL for F. oxysporum genomic DNA in AMM and 102 conidia/g for F. oxysporum conidia in soil. The correlation coefficients of the constructed standard curves for F. oxysporum detection in AMM and soil were 0.998 and 0.973, respectively. Repeatability evaluation showed that the system was stable and reliable. The AMM plants and soil samples were detected by the qRT-PCR detection system. The detection rate of the pathogenic F. oxysporum was 100% in F. oxysporum-inoculated samples, 66.7% in suspected diseased samples and 43.75% in soil samples; the pathogen colonization in AMM was positively related with the disease index and the number of conidia in diseased soil was significantly greater than that in healthy soil at the same AMM cultivation years. The qRT-PCR system established in this study was suitable for the detection of the pathogenic F. oxysporum causing AMM root rot, and will provide technical support for the rapid diagnosis, accurate evaluation and soil warning of AMM root rot.
[1] 陈垣, 朱蕾, 郭凤霞, 等. 2011. 甘肃渭源蒙古黄芪根腐病病原菌的分离与鉴定[J]. 植物病理学报, 41(04): 428-431. (Chen Y, Zhu L, Guo F X, et al.2011. Isolation and identification of the pathogens causing Astragalus membranaceus var. mongholicus root rot in Weiyuan of Gansu Province[J]. Acta Phytopathologica Sinica, 41(04): 428-431.) [2] 高芬, 赵晓霞, 秦雪梅, 等. 2018. 山西省蒙古黄芪根腐病优势致病菌群分析[J]. 植物保护学报, 45(4): 878-885. (Gao F, Zhao X X, Qin X M, et al.2018. Analysis of dominant pathogen community causing Astragalus membranaceus var. mongholicus root rot in Shanxi Province[J]. Journal of Plant Protection, 45(4): 878-885.) [3] 胡宗悦, 须周恒, 卢亦愚. 2016. 环介导等温扩增技术的常见问题分析与研究进展[J]. 病毒学报, 32(05): 659-665. (Hu Z Y, Xu Z H, Lu Y Y.2016. Analysis of common problems and research progress of loop mediated isothermal amplification technology[J]. Chinese Journal of Virology, 32(05): 659-665.) [4] 侯颖, 辛赫文, 张馨等. 2023. 河南省小麦假禾谷镰孢菌对氟环唑的敏感性[J]. 植物病理学报, 53(02): 307-316. (Hou Y, Xin H W, Zhang X, et al.2023. Sensitivity of Fusarium pseudograminis to epoxiconazole in Henan province[J]. Acta Phytopathologica Sinica, 53(02):307-316.) [5] 黄怀冬, 肖姬玲, 张屹, 等. 2017. 一种改进的尖孢镰刀菌的实时荧光定量PCR检测方法[J]. 植物保护, 43(4): 129-133. (Huang H D, Xiao J L, Zhang Y, et al.2017. An improved real-time fluorescence quantitative PCR method for detecting Fusarium[J]. Plant Protection, 43(4): 129-133.) [6] 李欣, 崔秀明, 刘迪秋, 等. 2020. 三七根中茄腐镰刀菌的实时荧光定量PCR检测[J]. 中草药, 51(5): 1302-1307. (Li X, Cui X M, Liu D Q, et al.2020. Real-time PCR detection method for Fusarium solani, pathogen of Panax notoginseng root rot[J]. Chinese Traditional and Herbal Drugs, 51(5): 1302-1307.) [7] 廖长宏, 陈军文, 吕婉婉, 等. 2017. 根和根茎类药用植物根腐病研究进展[J]. 中药材, 40(02): 492-497. (Liao C H, Chen J W, LYU W W, et al.2017. Advances in the study of root rot of roots and rhizomes of medicinal plants[J]. Journal of Chinese Medicinal Materials, 40(02): 492-497.) [8] 沈元劼, 齐谢敏, 刘标, 等. 2015. 棉花黄萎病菌实时荧光定量PCR检测方法的建立及应用[J]. 生态学杂志, 34(07): 2058-2063. (Shen Y J, Qi X M, Liu B, et al.2015. Development and application of a real-time PCR assay for the detection and quantification of Verticillium dahliae[J]. Chinese Journal of Ecology, 34(07): 2058-2063.) [9] 温华强, 舒灿伟, 曾莉莎, 等. 2021. 荷花腐败病菌的荧光定量PCR检测[J]. 中国农学通报, 37(34): 127-132. (Wen H Q, Shu C W, Zeng L S, et al.2021. Fluorescence quantitative PCR detection of Fusarium commune from lotus[J]. Chinese Agricultural Science Bulletin, 37(34): 127-132.) [10] 王鑫源, 董诚明, 杨林林, 等. 2022. 地黄轮纹病实时荧光定量PCR方法的建立及应用[J]. 中药材, 45(03): 530-535. (Wang X Y, Dong C M, Yang L L, et al.2022. Establishment and application of real-Time fluorescent quantitative PCR assay for leaf ring rot of Rehmannia glutinosa[J]. Journal of Chinses Medicinal Materials, 45(03): 530-535.) [11] 王瑜, 马建忠, 张伟杰, 等. 2018. 腐皮镰刀菌SYBR Green实时荧光定量PCR快速检测方法的建立[J]. 微生物学免疫学进展, 46(2): 34-39. (Wang Y, Ma J Z, Zhang W J, et al.2018. Rapid identification of Fusarium solani by SYBR Green real time quantitative PCR[J]. Progress in Microbiology and Immunology, 46(2): 34-39.) [12] 郑亚明, 骆勇, 周益林, 等. 2011. 实时荧光定量PCR在植物病害流行学中的应用[J]. 植物保护, 37(4): 18-22. (Zheng Y M, Luo Y, Zhou Y L, et al.2011. Application of real-time quantitative PCR to epidemiology of plant diseases[J]. Plant Protection, 37(4): 18-22.) [13] 张思琦, 沈黄莹, 庾金武, 等. 2022. 香榧根腐病病原菌分离鉴定及绿色药剂筛选[J]. 植物病理学报, 52(03): 499-503. (Zhang S Q, Shen H Y, Yu J W, et al.2022. Pathogen identification of Torreya grandis root rot and green fungicides screening[J]. Acta Phytopathologica Sinica, 52(03): 499-503.) [14] 赵雪姣. 2021. 锐顶镰刀菌的RT-qPCR检测及黄芪对其侵染响应的代谢组分析[D]. 硕士学位论文, 山西大学, 导师: 秦雪梅, pp. 9-22. (Zhao X J.2021. RT-qPCR detection of Fusarium acuminatum and metabolomic analysis of Astragalas membranaceus challenged with the pathogen[D].Thesis for M.S., Shanxi University, Supervisor: Yin X M, pp. 9-22.) [15] 周默, 白庆荣. 2021. 内蒙古莫旗黄芪根腐病病原的分离与鉴定[J]. 东北农业科学, 46(02): 52-55+61. (Zhou M, Bai Q R.2021. Isolation and identification of root rot pathogen of Astragalus membranaceus in Moqi, inner Mongolia[J]. Journal of Northeast Agricultural Sciences, 46(02): 52-55; 61.) [16] 赵永坡, 初雷霞, 岳开华, 等. 2014. 太子参根际尖孢镰刀菌绝对荧光定量检测方法的建立及其应用[J]. 江西农业大学学报, 36(5): 1127-1131. (Zhao Y P, Chu L X, Que K H, et al.2014. Establishment and application of qRT-PCR method for quantification of Fusarium oxysporum f. sp. in Pseudostellaria heterophylla rhizosphere[J]. Acta Agriculturae Universitatis Jiangxiensis, 36(5): 1127-1131.) [17] 周海波, 沈宇飞, 陆兆新, 等. 2022. 金黄色葡萄球菌及毒素多重实时荧光PCR检测技术及其试剂盒性能测试[J]. 南京农业大学学报, 45(06): 1258-1265. (Zhou H B, Shen Y F, Lu Z X, et al.2022. Multiplex real-time PCR assay for detection of Staphylococcus aureus and associated toxin genes and its performance test of kit[J]. Journal of Nanjing Agricultural University, 45(06): 1258-1265.) [18] 张吉祥, 凌键, 谢丙炎, 等. 2013. 尖孢镰刀菌专化型及生理小种分子检测研究进展[J]. 中国农学通报, 29(36): 338-342. (Zhang J X, Ling J, Xie B Y, et al.2013. Recent developments in the molecular detection of formae speciales and races of Fusarium oxysporum[J]. Chinese Agricultural Science Bulletin, 29(36): 338-342.) [19] Bian X, Zhao Y, Xiao S, et al.2021. Metabolome and transcriptome analysis reveals the molecular profiles underlying the ginseng response to rusty root symptoms[J]. BMC Plant Biology, 21: 215. [20] Gao F, Chao J B, Guo J, et al.2021. 1H NMR-Based metabolomics to identify resistance-related metabolites in Astragalus membranaceus var. mongholicus against Fusarium root rot[J]. International Journal of Agriculture and Biology, 26: 69-78. [21] Hafez M, Abdelmagid A, Aboukhaddour R, et al.2021. Fusarium root rot complex in soybean: Molecular characterization, trichothecene formation, and cross-pathogenicity[J]. Phytopathology, 111: 2287-2302. [22] Osawa H, Suzuki N, Akino S, et al.2021. Quantification of Phytophthora infestans population densities and their changes in potato field soil using real-time PCR[J]. Science Reports, 11:6266. [23] Flores-de la Rosa F R, Luna E D, Adame-García J, et al.2018. Phylogenetic position and nucleotide diversity of Fusarium oxysporum f. sp. vanillae worldwide based on translation elongation factor 1α sequences[J]. Plant Pathology, 67: 1278-1285. [24] Singh N, Kapoor R.2018. Quick and accurate detection of Fusarium oxysporum f. sp. carthami in host tissue and soil using conventional and real-time PCR assay[J]. World Journal of Microbiology and Biotechnology, 34: 175. [25] Tziros G T, Samaras A, Karaoglanidis G S.2022. Fusarium equiseti as an emerging foliar pathogen of lettuce in Greece: Identification and development of a real-time PCR for quantification of inoculum in soil samples[J]. Pathogens, 11:1357. [26] Wang Y, Wang C W, Ma Y R, et al.2022. Rapid and specific detection of Fusarium acuminatum and Fusarium solani associated with root rot on Astragalus membranaceus using loop-mediated isothermal amplification (LAMP)[J]. European Journal Plant Pathology, 163: 305-320. [27] Zheng Y, Han X, Zhao D, et al.2021. Exploring biocontrol agents from microbial keystone taxa associated to suppressive soil: A new attempt for a biocontrol strategy[J]. Frontiers in Plant Science, 12: 655673. [28] Zhong X, Yang Y, Zhao J, et al.2022. Detection and quantification of Fusarium oxysporum f. sp. niveum race 1 in plants and soil by real-time PCR[J]. Plant Pathology Journal, 38: 229-238.