Genome-wide Identification and Expression Analysis of WUS Gene Subfamily in Wheat (Triticum aestivum) Pistil and Stamen
ZHAO Ruo-Nan1, ZOU Rui2, YAMAMOTO Naoki1, CHEN Zhen-Yong1, WU Yi-Chao1, JIANG Jin3, PENG Zheng-Song4, YANG Zai-Jun1,*
1 College of Life Science/Key Laboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong 637000, China; 2 Agricultural Product Quality Inspection and monitoring Center of Aba Sichuan Province, Ma-erkang 624011, China; 3 Nanchong Academy of Agricultural Sciences, Nanchong 637000, China; 4 School of Agricultural Science, Xichang University, Xichang 615013, China
Abstract:WUSCHEL (WUS) is a homeodomain transcription factor, an evolutionary branch of the WOX family, which may play an important role in embryogenesis and bud regeneration in plant cells by regulating the expression of specific target genes. In this study, a total of 25 WUS genes were identified in the entire genome of wheat (Triticum aestivum) by bioinformatics methods. These genes were distributed unevenly on the first, second, third and the fifth homologous group of chromosomes, with tandem duplication observed on the third homologous group chromosomes. Conserved domain and structural analysis showed that motif 1 and motif 3 were present in all members of the family, and the WUS proteins clustered together showed similar gene structure according to the evolutionary tree. A total of 18 hormone response and abiotic stress response elements were identified in the promoter region of TaWUSs. Tissue expression profile analysis showed that the 25 detected TaWUSs had obvious tissue expression specificity in wheat, and most of them showed high expression in the floral reproductive organs. qRT-PCR results also confirmed that TaWUS-2A1, TaWUS-3B2, TaWUS-3D2, TaWUS-5A1, TaWUS-5B1 and TaWUS-5D1 were highly expressed in stamens, and TaWUS-3D1 was highly expressed in pistils. Especially, the high expression of TaWUS-1A, TaWUS-1B, TaWUS-1D, and TaWUS-2D1 in pistillody stamens might indicate their involvement in regulating the formation of stamen homologous transformation into pistil traits in the wheat homologous transformation sterility-1 (HTS-1). This study provides a theoretical basis for further research on the function of wheat WUS subfamily genes in wheat.
[1] 陈玥玥. 2023. 毛酸浆PfWUS的克隆分析及其对果实发育的影响[D]. 硕士学位论文, 杭州师范大学, 导师: 王慧中, pp.4-6. (Chen Y Y.2023. Gene cloning and function analysing of PfWUS in fruit development of Physalis pubescens L[D]. Thesis for M.S., Hangzhou Normal University, Supervisor: Wang H Z, pp. 4-6.) [2] 李圣军. 2023. 2022/2023年度全球小麦市场回顾及2023/2024年度展望[J]. 中国粮食经济, 08: 65-69. (Li S J.2023. Global wheat market review 2022/2023 and outlook 2023/2024[J]. Chinese Grain Economy, 08: 65-69.) [3] 刘红娟, 刘洋, 刘琳. 2008. 脱落酸对植物抗逆性影响的研究进展[J]. 生物技术通报, 06: 7-9. (Liu H J, Liu Y, Liu L.2008. Progress of research on the influence of abscisic acid in plant resistance[J]. Biotechnology Bulletin, 06: 7-9.) [4] 司雪梅. 2022. 小麦产量相关基因TaWUS-like的功能和调控机制解析[D]. 硕士学位论文, 甘肃农业大学, 导师: 孟亚雄, 刘红霞, pp. 11-16. (Si X M.2022. Study on the functions and regulatory mechanisms of yield-related gene TaWUS-like in Triticum aestivum[D]. Thesis for M.S., Gansu Agricultural University, Supervisor: Meng Y X, Liu H X, pp. 4-6.) [5] 孙丽丽, 晋秀娟, 赵锴, 等. 2022. 小麦衰老相关基因TaSAG39的生物信息学及表达模式分析[J]. 华北农学报, 37(02): 18-27. (Sun L L, Jing X J, Zhao K, et al.2022. Bioinformatics and expression pattern analysis of senescence-associated gene TaSAG39 in wheat[J]. Acta Agriculturae Boreali-Sinica, 37(02): 18-27.) [6] 唐丽雅, 郑越, 朱津, 等. 2022. 郑州地区周代农作物资源利用研究: 以荥阳官庄为例[J]. 第四纪研究, 42(01): 129-143. (Tang L Y, Zhen Y, Zhu J.2022. Study on the utilization of crops in Zhou dyansty in the Zhengzhou region: A case from Guanzhuang site, Xingyang[J]. Quaternary Sciences, 42(01): 129-143.) [7] 吴欣欣. 2019. AG-WUS-LHP1-lncRNA协同调控梅多雌蕊形成和发育[D]. 博士学位论文, 南京农业大学, 导师: 高志红, pp. 35-36. (Wu X X.2019. AG-WUS-LHP1-lncRNA regulate multiple pistil formation and development in Japanese apricot[D]. Thesis for Ph. D., Nanjing Agricultural University, Supervisor: Gao Z H, pp. 35-36.) [8] 武强强, 张凤洁, 董浩欢, 等. 2021. 小麦WOX转录因子基因的全基因组鉴定与分析[J]. 激光生物学报, 30(01):67-74. (Wu Q Q, Zhang F J, Dong H J, et al.2021. Genome-wide identification and analyses of WOX transcription factor genes in wheat[J]. Acta Laser Biology Sinica,30(01): 67-74.) [9] 杨懿. 2019. 菊花花发育相关转录因子ECE和WUS的功能鉴定及互作分析[D]. 博士学位论文, 北京林业大学, 导师: 张启翔, pp. 82-89. (Yang Y.2019. Functional identification and interaction analysis of flower development-related ECE and WUS TFs in Chrysanthemum morifolium[D]. Thesis for Ph. D., Beijing Forestry University, Supervisor: Zhang Q X, pp. 82-89.) [10] 张明益. 1992. 浅析小麦分蘖成穗的限制因子[J]. 湖北农业科学, 12: 6-8. (Zhang M Y.1992. Analysis on the limiting factors of wheat tillering into ear[J]. Hubei Agricultural Sciences, 12: 6-8.) [11] 赵佳. 2014. 拟南芥中ABA与WUS的关系分析及三个圆叶突变体的图位克隆[D]. 硕士学位论文, 西北大学, 导师:步怀宇;徐云远, pp. 33-34. (Zhao J.2014. The analysis of the relationship between ABA and WUS and map-based cloning of three round leaf mutant in Arabidopsis[D]. Thesis for M.S., Northwestern University, Supervisor: Bu H Y, Xu Y Y, pp. 33-34.) [12] 赵宇茜. 2022. 小麦胚乳特异表达基因的筛选及其启动子元件的初步分析[D]. 硕士学位论文, 西北农林科技大学, 导师: 许盛宝, pp. 34. (Zhao Y Q.2022. Identification of wheat endosperm-specific expressed genes and preliminary analysis of their promoter elements[D]. Northwest A&F University, supervisor: Xu S B,pp. 34.) [13] Bolger A M, Lohse M, Usadel B.2014. Trimmomatic: A flexible trimmer for Illumina sequence data[J]. Bioinformatics, 30(15): 2114-2120. [14] Dolzblasz A, Nardmann J, Clerici E, et al.2016. Stem cell regulation by Arabidopsis WOX genes[J]. Molecular Plant, 9(7): 1028-1039. [15] Graaff E V D, Laux T, Rensing S A.2009. The WUS homeobox-containing (WOX) protein family[J]. Genome Biology, 10: 248. [16] Hao Q, Zhang L, Yang Y, et al.2019. Genome-wide analysis of the WOX gene family and function exploration of GmWOX18 in soybean[J]. Plants (Basel), 8(7): 215. [17] Kamiya N, Nagasaki H, Morikami A, et al.2003. Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem[J]. The Plant Journal, 35: 429-441. [18] Laux T, Mayer K F, Berger J, et al.1996. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis[J]. Development, 122: 87-96. [19] Lenhard M, Bohnert A, Jurgens G, et al.2001. Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS[J]. Cell, 105: 805-814. [20] Li H, Handsaker B, Wysoker A, et al.2009. The Sequence Alignment/Map format and SAMtools[J]. Bioinformatics, 25(16): 2078-9. [21] Li X, Liu C, Li W, et al.2016. Genome-Wide identification, phylogenetic analysis and expression profiling of the WOX family genes in Solanum lycopersicum[J]. Hereditas, 38: 444-460. [22] Li Z, Liu D, Xia Y, et al.2020. Identification of the WUSCHEL-related homeobox (WOX) gene family, and interaction and functional analysis of TaWOX9 and TaWUS in wheat[J]. International Journal of Molecular Sciences, 21(5): 1581. [23] Liao Y, Smyth G K, Shi W.2014. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features[J]. Bioinformatics, 30(7): 923-930. [24] Lin H N, Hsu W L.2018. DART: A fast and accurate RNA-seq mapper with a partitioning strategy[J]. Bioinformatics, 34(2): 190-197. [25] Mjomba F M, Zheng Y, Liu H, et al.2016. Homeobox is pivotal for OsWUS controlling tiller development and female fertility in rice[J]. G3 (Bethesda), 6(7): 2013-2021. [26] Peng Z S, Yang Z J, Ouyang Z M, et al.2013. Characterization of a novel pistillody mutant in common wheat[J]. Australian Journal of Crop Science, 7(1): 159-164. [27] Schoof H, Lenhard M, Haecker A, et al.2000. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes[J]. Cell, 100: 635-644. [28] Shumayla, Sharma S, Pandey A K, et al.2016. Molecular characterization and global expression analysis of lectin receptor kinases in bread wheat (Triticum aestivum)[J]. PLOS ONE, 11(4): e0153925. [29] Sun J, Nishiyama T, Shimizu K, et al.2013. TCC: An R package for comparing tag count data with robust normalization strategies[J]. BMC Bioinformatics, 14: 219. [30] Tucker E J, Baumann U, Kouidri A, et al.2017. Molecular identification of the wheat male fertility gene Ms1 and its prospects for hybrid breeding[J]. Nature Communications, 8(1): 869. [31] Verhaak R G, Sanders M A, Bijl M A, et al.2006. HeatMapper: Powerful combined visualization of gene expression profile correlations, genotypes, phenotypes and sample characteristics[J]. BMC Bioinformatics, 7: 337. [32] Wang X, Yin J.2012. Characterization of tomato transcription factor WUSCHEL and functional study in Arabidopsis[J]. Journal of Integrative Agriculture, 11(08): 1257-1265. [33] Wilkins M R, Gasteiger E, Bairoch A, et al.1999. Protein identification and analysis tools in the ExPASy server[J]. Methods in Molecular Biology, 112: 531-52. [34] Zörb C, Ludewig U, Hawkesford M J.2018. Perspective on wheat yield and quality with reduced nitrogen supply[J]. Trends in Plant Science, 23(11): 1029-1037.