Effects of Microbial Fertilizers on Soil Improvement and Bacterial Communities in Saline-alkali Soils of Lycium barbarum
WANG Dan1, ZHAO Ya-Guang1, MA Rui1, YANG Peng1, ZHANG Cheng2, ZHOU Dong-Jiao2, SUN Fu-Xin2, ZHANG Feng-Hua1,*
1 Key Laboratory of Oasis Ecology Agriculture of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China;
2 Jiangsu Guoxin Union Energy Co., Ltd., Yixin 214200, China
Abstract:Soil salinization has caused serious harm to the security of cultivated land and hinders the sustainable development of agriculture. Bioremediation has great potential because of its lasting effect and high ecological benefit. This study adopted field test methods, six treatments were set up: Conventional fertilizer (CK), DF-3 bacterial fertilizer (T1), DF-7 bacterial fertilizer (T2), LT bacterial fertilizer (T3); LP bacterial fertilizer (T4) and commercial bacterial fertilizer (T5), to study their effects on the chemical properties and the enzyme activities of of saline soils of Lycium barbarum, and to analyze the changes of bacterial community structure and diversity by using high-throughput sequencing technology, and the best microbial fertilizer for improving saline-alkali soils was found. The results showed that compared with the conventional fertilizer (CK), the pH and total salt content of different bacterial fertilizer treatments significantly decreased in that the pH values decreased 0.93%~3.50% (P<0.05), total salt content decreased 1.30%~9.42% (P<0.05), and the inhibition effects of T1 and T4 were very obvious; The contents of available K and P increased most after the application of T1, which were 14.57% and 129.69% (P<0.05) and higher than those of CK, respectively. The contents of alkali hydrolyzed N increased most by using T5, which was 80.70% (P<0.05) and higher than that of CK, and the content of organic matter increased most when T2 was used, which was 47.61% (P<0.05) and higher than that of CK. The activities of urease and sucrase in the soil treated with T1 were the highest, which were 2.31 and 19.44 (P<0.05) times of CK, respectively. The activities of alkaline phosphatase and protease in the soil treated with T4 were the highest, which were 1.72 and 0.97 (P<0.05) times of CK, respectively. In addition to T1, the combined application of bacterial fertilizers increased the bacterial operational taxonomic units number and Chao1 index, and T4 and T5 increased the bacterial Shannon index. Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes were the dominant groups, and their relative richness together accounted for the total bacteria 82.72%~87.24% of the total. According to redundancy analysis, 69.88% of the change in the bacterial communities was due to physical and chemical factors and enzyme activities of the soils. The dominant phyla were Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi in all treatments. At the genus levels, the relative abundance of Pseudomonas and Bacillus were higher than in other treatments by using T1. There was a positive correlation between Proteobacteria and Firmicutes. Soil protease, urease, sucrase, and catalase activities were positively correlated with Bacteroidetes. Combined application of microbial fertilizer could improve soil fertility and soil enzyme activities, change the composition and structure of bacterial communities, and was beneficial to the improvement of saline-alkali soils, T1 and T4 were better in eliminating soil salinity and recovering beneficial microorganisms in salinized Lycium barbarum farmland, which would provide theoretical basis and technical reference for scientific improvement of saline-alkali soils.
王丹, 赵亚光, 马蕊, 杨鹏, 张成, 周东姣, 孙福新, 张凤华. 微生物菌肥对盐碱地枸杞土壤改良及细菌群落的影响[J]. 农业生物技术学报, 2020, 28(8): 1499-1510.
WANG Dan, ZHAO Ya-Guang, MA Rui, YANG Peng, ZHANG Cheng, ZHOU Dong-Jiao, SUN Fu-Xin, ZHANG Feng-Hua. Effects of Microbial Fertilizers on Soil Improvement and Bacterial Communities in Saline-alkali Soils of Lycium barbarum. 农业生物技术学报, 2020, 28(8): 1499-1510.
[1] 鲍士旦.2001.土壤农化分析[M].中国农业出版社,北京,pp.25-114.
(Bao S D.2001.Soil Agro-chemistry Analy-sis[M].China Agriculture Press,Beijing.pp.25-114.)
[2] 陈晓芬,李忠佩,刘明,等.2013.不同施肥处理对红壤水稻土团聚体有机碳、氮分布和微生物生物量的影响[J].中国农业科学,46(5):950-960.
(Chen X F,Li Z P,Liu M,et al.2013.Effects of different fertilizations on organic carbon and nitrogen contents in Water-Stable aggregates and microbial biomass content in paddy soil of subtropical China[J].Scientia Agricultura Sinica,46(5):950-960.)
[3] 蔡红,沈仁芳.2005.改良茚三酮比色法测定土壤蛋白酶活性的研究[J].土壤学报,(02):306-313.
(Cai H,Shen R F,2005.Determination of soil protease activity with modified ninhydrin colorimetry[J].Acta Pedologica Sinica,(02):306-313.)
[4] 褚长彬,吴淑杭,张学英,等.2012.有机肥与微生物肥配施对柑橘土壤肥力及叶片养分的影响[J].中国农学通报,28(22):201-205.
(Chu C S,Wu S H,Zhang X Y,et al.2012.Effects of application of manure and microbial fertilizer on soil fertility and leaf nutrient[J].Chinese Agricultural Science Bulletin,28(22):201-205.)
[5] 党雯,郜春花,张强,等.2014.解钾菌的研究进展及其在农业生产中的应用[J].山西农业科学,42(8):921-924.
(Dang W,Gao C H,Zhang Q,et al.2014.Research progress of silicate bacteria and its application in agricultural production[J].Journal of Shanxi Agricultural Sciences,42(8):921-924.)
[6] 段淇斌,赵冬青,姚拓,等.2015.施用生物菌肥对饲用玉米生长和土壤微生物数量的影响[J].草原与草坪,35(02):54-58.
(Duan Q B,Zhao D Q,Yao T,et al.2015.Effects of using biofertilizer on forage maize growth and soil microbial number[J].Grassla and Ture,35(02):54-58.)
[7] 逄焕成,李玉义,严慧峻,等.2009.微生物菌剂对盐碱土理化和生物性状影响的研究[J].农业环境科学学报,28(5):951-955.
(Feng H C,Li Y Y,Yan J H,et al.2009.Effects of inoculating different microorganism agents on the improvement of salinized soil[J].Journal of Agro-Environment Science,28(5):951-955.)
[8] 公华锐,李静,马军花,等.2019.秸秆还田配施有机无机肥料对冬小麦土壤水氮变化及其微生物群落和活性的影响[J].生态学报,39(06):2203-2214.
(Gong H R,Li J,Ma J H,et al.2019.Effects of returning straw to field and applying organic and inorganic fertilizers on soil water and nitrogen changes and microbial community and activity in winter wheat[J].Acta Ecologica Sinica,39(06):2203-2214.)
[9] 关松荫.1986.土壤酶及其研究法[M].中国农业出版社,北京.pp.260-339.
(Guan S Y.1986.Soil enzymes and research methods[M].China Agriculture Press,Beijing.pp.25-114.)
[10] 解媛媛,谷洁,高华,等.2010.微生物菌剂酶制剂化肥不同配比对秸秆还田后土壤酶活性的影响[J].水土保持研究,17(02):233-238.
(Jie Y Y,Gu J,Gao H,et al.2010.Dynamic changes of soil enzyme activities in microorganism inoculants,enzymesand chemical fertilizers in different proportions after straw returning soil[J].Research of Soil and Water Conservation,17(02):233-238.)
[11] 库永丽,徐国益,赵骅,等.2018.微生物肥料对猕猴桃高龄果园土壤改良和果实品质的影响[J].应用生态学报,29(08):2532-2540.
(Ku Y L,Xu G Y,Zhao Y,et al.2018.Effects of microbial fertilizer on soil improvement and fruit quality of kiwifruit in old orchard[J].Chinese Journal of Applied Ecology,29(08):2532-2540.)
[12] 李禹尧,马冬君,王宁,等.2014.黑龙江省杂交水稻研究现状与发展对策[J].黑龙江农业科学,(01):136.
(Li Y Y,Ma D J,Wang N,et al.2014.Research status and development counter- measures of hybrid rice in Heilongjiang province[J].Heilongjiang Agricultural Sciences,(01):136.)
[13] 李颖,陶军,钞锦龙,等.2014.滨海盐碱地“台田-浅池”改良措施的研究进展[J].干旱地区农业研究,32(05):154-160+167.
(Li Y,Tao J,Chao J L,et al.2014.Research progress of improving measures of “raised field-shallow pool” for coastal saline-alkaline land[J].Agricultural Research in the Arid Areas,32(05):154-160+167.)
[14] 李少朋,陈昢圳,刘惠芬,等.2019.丛枝菌根提高滨海盐碱地植物耐盐性的作用机制及其生态效应[J].生态环境学报,28(02):411-418.
(Li S P,Chen P Z,Liu H F,et al.2019.Mechanism and ecological effects of arbuscular mycorrhizal fungi on improving salt tolerance of plants in coastal saline-alkaline land[J].Ecology and Environmental Sciences,28(2):411-418.)
[15] 卢建男,张琼,刘铁军,等.2017.不同改良剂对盐碱地土壤及草地早熟禾生长的影响[J].草业科学,34(06):1141-1148.
(Lu J N,Zhang Q,Liu T J,et al.2017.Effect of soil conditioners on saline-alkali soil and growth of Kentucky bluegrass[J].Pratacultural Science,34(06):1141-1148.)
[16] 李文广,杨晓晓,黄春国,等.2019.饲料油菜作绿肥对后茬麦田土壤肥力及细菌群落的影响[J].中国农业科学,52(15):2664-2677.
(Li W G,Yang X X,Huang C G,et al.2019.Effects of rapeseed green manure on soil fertility and bacterial community in dryland wheat field[J].Scientia Agricultura Sinica,52(15):2664-2677.)
[17] 李晨华,张彩霞,唐立松,等.2014.长期施肥土壤微生物群落的剖面变化及其与土壤性质的关系[J].微生物学报,54(03):319-329.
(Li C H,Zhang C X,Tang L S,et al.2014.Effect of long-term fertilizing regime on soil microbial diversity and soil property[J].Acta Microbiologica Sinica,54(03):319-329.)
[18] 马垒,郭志彬,王道中,等.2019.长期三水平磷肥施用梯度对砂姜黑土细菌群落结构和酶活性的影响[J].土壤学报,(06):1-14.
(Ma L,Guo Z B,Wang D Z,et al.2019.Effect of long-term application of phosphorus fertilizer on soil bacterial community structure and enzymatic activity in lime concretion black[J].Acta Pedologica Sinica,(06):1-14.)
[19] 沈仁芳,赵学强.2015.土壤微生物在植物获得养分中的作用[J].生态学报,35(20):6584-6591.
(Shen R F,Zhao X Q.2015.Role of soil microbes in the acquisition of nutrients by plants[J].Acta Ecologica Sinica,35(20):6584-6591.)
[20] 宋建.2018.耐盐碱微生物的筛选及其在赤泥改良中的应用[D].硕士学位论文,河南大学,导师:翟秋敏.pp.14-15.
(Song J.2018.Isolation of alkali-tolerant microorganisms and their improvement of bauxite residue[D].Thesis for M.S.,Henan University,Supervisor:Zhai Q M.pp.14-15.)
[21] 孙家骏,付青霞,谷洁,等.2016.生物有机肥对猕猴桃土壤酶活性和微生物群落的影响[J].应用生态学报,27(03):829-837.
(Sun J J,Fu Q X,Gu J,et al.2016.Effects of bio-organic fertilizer on soil enzyme activities and microbial community in kiwifruit orchard[J].Chinese Journal of Applied Ecology,27(03):829-837.)
[22] 孙瑞莲,赵秉强,朱鲁生,等.2003.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J].植物营养与肥料学报,9(04):406-410.
(Sun R L,Zhao B Q,Zhu L S,et al.2003.Effects of long-term fertilization on soil enzyme activities andits role in adjusting-controlling soil fertility[J].Plant Nutrition and Fertilizer Science,9(04):406-410.)
[23] 吴晓卫,付瑞敏,郭彦钊,等.2015.耐盐碱微生物复合菌剂的选育、复配及其对盐碱地的改良效果[J].江苏农业科学,43(06):346-349.
(Wu X W,Fu R M,Guo Y Z,et al.2015.Breeding,compounding of salt-tolerant microbial complex bacteria agent and its improvement effect on saline-alkali land[J].Jiangsu Agricultural Science,43(06):346-349.)
[24] 汪立梅,桂丕,李化山,等.2018.改良剂与微生物菌剂联合施用对盐碱地土壤和耐盐植物的影响[J].江苏农业科学,46(17):264-269.
(Wang L M,Gui P,Li H S,et al.2018.Effects of combined application of ameliorants and microbial agents on saline-alkali soils and salt-tolerant plants[J].Jiangsu Agricultural Science,46(17):264-269.)
[25] 王丽丽,石俊雄,袁赛飞,等.2013.微生物有机肥结合土壤改良剂防治烟草青枯病[J].土壤学报,50(1):150-156.
(Wang L L,Shi J F,Yuan S F,et al.2013.Control of tobacco bacterial wilt with biomanure plus soil amendments[J].Acta Pedologica Sinica,50(1):150-156.)
[26] 王慧颖,徐明岗,周宝库,等.2018.黑土细菌及真菌群落对长期施肥响应的差异及其驱动因素[J].中国农业科学,51(5):914-925.
(Wang H Y,Xu M G,Zhou B K,et al.2018.Response and driving factors of bacterial and fungal community to long-term fertilization in black soil[J].Scientia Agricultura Sinica,51(5):914-925.)
[27] 王超,李刚,黄思杰,等.2019.枯草芽胞杆菌菌肥对有机冬瓜根区土壤微生态的影响[J].微生物学通报,46(03):563-576.
(Wang C,Li G,Huang S J,et al.2019.Effect of Bacillus subtilis microbial fertilizer on root-zone soil microbial ecology of organic Chinese watermelon[J].Microbiology China,46(03):563-576.)
[28] 雍太文,杨文钰,向达兵,等.2012.不同种植模式对作物根系生长、产量及根际土壤微生物数量的影响[J].应用生态学报,23(01):125-132.
(Yong T W,Yang W Y,Xiang D B,et al.2012.Effects of different cropping modes on crop root growth,yield,and rhizosphere soil mi-crobes'number[J].Chinese Journal of Applied Ecology,23(01):125-132.)
[29] 闫瑞瑞,卫智军,乌仁其其格,等.2017.微生物肥料对呼伦贝尔打孔羊草草甸草原土壤微生物及酶活性的影响研究[J].生态环境学报,26(04):597-604.
(Yan R R,Wei Z J,WuRen Q Q G,et al.2017.Effect of combined microbial fertilizer on soil microorganism and enzyme activity in the Hulunber Punching Leymus chinensis meadow steppe[J].Ecology and Environmental Sciences,26(04):597-604.)
[30] 游偲,张立猛,计思贵,等.2014.枯草芽孢杆菌菌剂对烟草根际土壤细菌群落的影响[J].应用生态学报,25(11):3323-3330.
(You S,Zhang L M,Ji S G,et al.2014.Impact of biocontrol agent Bacillus subtilis on bacterial communities in tobacco rhizosphericsoil[J].Chinese Journal of Applied Ecology,25(11):3323-3330.)
[31] 杨亚东,王志敏,曾昭海.2018.长期施肥和灌溉对土壤细菌数量、多样性和群落结构的影响[J].中国农业科学,51(2):290-301.
(Yang Y D,Wang Z M,Zeng S H.2018.Effects of long-term different fertilization and irrigation managements on soil bacterial abundance,diversity and composition[J].Scientia Agricultura Sinica,51(2):290-301.)
[32] 朱建峰,崔振荣,吴春红,等.2018.我国盐碱地绿化研究进展与展望[J].世界林业研究,31(04):71.
(Zhu J F,Cui Z R,Wu C H,et al.2010.Research advances and prospect of saline and alkali land greening in China[J].World Forestry Research,31(04):71.)
[33] 朱丹,张磊,韦泽秀,等.2014.菌肥对青稞根际土壤理化性质以及微生物群落的影响[J].土壤学报,51(03):627-637.
(Zhu D,Zhang L,Wei Z X,et al.2014.Effects of bacterial manure on soil physicochemical properties times and microbial community diversity in rhizosphere of highland barley[J].Acta Pedologica Sinica,51(03):627-637.)
[34] 张凯煜,谷洁,王小娟,等.2019.微生物有机肥对樱桃园土壤细菌群落的影响[J].中国环境科学,39(03):1245-1252.
(Zhang K Y,Gu J,Wang X J,et al.2019.Effects of bio-organic fertilizer on the soil bacterial community in a cherry orchard[J].China Environmental Science,39(3):1245-1252.)
[35] 郑普山,郝保平,冯跃晨,等.2012.不同盐碱地改良剂对土壤理化性质、紫花苜蓿生长及产量的影响[J].中国农业生态学报,20(9):1216-1221.
(Zheng P S,Hao B P,Feng Y C,et al.2012.Effects of different saline-alkali land amendments on soil physicochemical properties and alfalfa growth and yield[J].Chinese Journal of Eco-Agriculture,20(9):1216-1221.)
[36] 张美存,程田,多立安,等.2017.微生物菌剂对草坪植物高羊茅生长与土壤酶活性的影响[J].生态学报,37(14):4763-4769.
(Zhang M C,Cheng T,Duo L A,et al.2017.Effects of microbial agents on the growth of turfgrass Festuca arundinacea and soil enzyme activity[J].Acta Ecologica Sinica,37(14):4763-4769.)
[37] Bijayalaxmi D N,Yadava P S.2006.Seasonal dynamics in soil microbial biomass C,N and P in a mixed-oak forest ecosystem of Manipur,North-east India[J].Applied Soil Ecology,31(3):220-227.
[38] Chen C,Zhang J N,Lu M,et al.2016.Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers[J].Biology and Fertility of Soils,52(4):455-467.
[39] Constancias F,Prevost-Boure N C,Terrat S,et al.2014.Microscale evidence for a high decrease of soil bacterial density and diversity by cropping[J].Agronomy for Sustainable Development,34(4):831-840.
[40] El-Sayed S F,Hassan H A,El-Mogy M M.2015.Impact of bio-and organic fertilizers on potato yield,quality and tuber weight loss after harvest[J].Potato Research,58(1):67-81.
[41] Fierer N,Lauber C L,Ramirez K S,et al.2012.Comparative metagenomic,phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J].The ISME Journal,6(5):1007-1017.
[42] Garcia K,Doidy J,Zimmermann S D,et al.2016.Take a trip through the plant and fungal transportome of mycorrhiza[J].Trends in Plant Science,21(11):937-950.
[43] Hailemariam M,Birhane E,Gebresamuel G,et al.2018.Arbuscular mycorrhiza effects on faidherbia albida (Del.) A.Chev.growth under varying soil water and phosphorus levels in northern Ethiopia[J].Agroforestry systems,92(2):485-498.
[44] Li H,Li R H,Rossi F,et al.2016.Differentiation of microbial activity and functional diversity between various biocrust elements in a heterogeneous crustal community[J].CATENA,147:138-145.
[45] Liu J J,Sui Y E,Yu Z H,et al.2014.High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of northeast China[J].Soil Biology and Biochemistry,70:113-122.
[46] Nayak D R,Babu Y J,Adhya T K.2007.Long-term application of compost in fluences microbial biomass and enzyme activities in a tropical Aeric Endo aquept planted to rice under flooded condition[J].Soil Biology and Biochemistry,39(8):1897-1906.
[47] Orgiazzi A,Dunbar M B,Panagos P,et al.2015.Soil biodiversity and DNA barcodes:Opportunities and challenges[J].Soil Biology and Biochemistry,80:244-250.
[48] Sugden A M.2000.Ecology:Diversity and ecosystem resilience[J].Science,290(5490):233-235.
[49] Shen C,Xiong J,Zhang H,et al.2013.Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J].Soil Biology and Biochemistry,57:204-211.
[50] Shokralla S,Spall J L,Gibson J F,et al.2012.Next-generation sequencing technologies for environmental DNA research[J].Molecular Ecology,21(8):1794-1805.
[51] Yu S,He Z L,Huang C Y.2003.Advances in their search of soil microorganisms and their mediated processes under heavy metal stress[J].The Journal of Applied Ecoloyg,14:618-622.