Cloning and Expression Analysis of Light Signal Transduction Regulatory Factor LhSPA1 Gene in Lily
HUANG Li1, YANG Jie2, LYU Bo2, SONG Ju-Rong2, CHEN Feng2, GUO Cong2, YANG Yuan-Yuan2, XIANG Fa-Yun2,*, XU Ben-Bo1,*
1 Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434025, China; 2 Industrial Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Research Center of Flower, Wuhan 430064, China
Abstract:Anthocyanin is one of the key substances determining the color of lily (Lilium brownii var. viridulum) flowers, and its biosynthesis is susceptible to various environmental factors. SPA1 (suppressor of phyA-105) transcription factor plays a crucial role in regulating plant light signal transduction. To further understand the role of LhSPA1 in the regulation of anthocyanin induction in oriental hybrid lily (Lilium oriental hybrid), this study utilized 'Sunny Martinique' cultivar as material. The differences of anthocyanin content in lily buds treated with different light treatments were compared, and ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to detect the perianth slices of flower buds in the complete color development period. Combined with the previous transcriptome data, LhSPA1 was cloned and then subjected to bioinformatics analysis; and the expression levels of genes related to anthocyanin biosynthesis under different light conditions were analyzed using qRT-PCR. The results showed that the main color components in the tepals of 'Sunny Martinique' were cyanidin and pelargonidin. Shading treatment reduced the accumulation of anthocyanin in lily buds. The results of gene expression analysis showed that the expression of anthocyanin biosynthesis-related genes was down-regulated under shading treatment, but the expression of LhSPA1 was significantly higher than that under normal light conditions. The coding sequence length of LhSPA1 (GenBank No. PQ499086) was 2 931 bp, encoding 976 amino acids. Phylogenetic tree analysis showed that LhSPA1 protein was closely related to ZmSPA1 protein in monocotyledonous plant. Sequence analysis revealed that LhSPA1 protein shared conserved domains with SPA1 protein from other species. Subcellular localization results revealed that the fluorescence signal of LhSPA1 protein was located in the nucleus of Nicotiana tabacum. Transient overexpression of LhSPA1 and constitutive photomorphogenic 1 (LhCOP1) in lily petals resulted in light lily flower color. In conclusion, it was speculated that LhSPA1 played an important role in light-induced anthocyanin biosynthesis in lily. This study lays a foundation for analyzing the molecular mechanism of light signal regulating lily anthocyanin biosynthesis pathway.
[1] 范文广, 柴佳靖, 李保豫, 等. 2023. 百合花青苷分子调控研究进展[J]. 植物遗传资源学报, 24(05): 1236-1247. (Fan W G, Chai J J, Li B Y, et al.2023. Advances in molecular regulation of anthocyanin biosynthesis in Lilium[J]. Journal of Plant Genetic Resources, 24(05): 1236-1247.) [2] 付博, 梁俊阳, 韩龙洋, 等. 2022. 光照对植物多酚类物质代谢调控的研究进展[J]. 河南农业大学学报, 56(03): 355-363. (Fu B, Liang J Y, Han L Y, et al.2022. Research progress on the regulation of light on plant polyphenol metabolism[J]. Journal of Henan Agricultural University, 56(03): 355-363.) [3] 洪艳, 武宇薇, 宋想, 等. 2021. 光照调控园艺作物花青素苷生物合成的分子机制[J]. 园艺学报, 48(10): 1983-2000. (Hong Y, Wu Y W, Song X, et al.2021. Molecular mechanism of light-induced anthocyanin biosynthesis in horticultural crops[J]. Acta Horticulturae Sinica, 48(10): 1983-2000.) [4] 江帆, 戴静琪, 李妍, 等. 2024. 东方百合LiMYB2基因克隆及表达分析[J]. 分子植物育种, 22(06): 1807-1814. (Jiang F, Dai J Q, Li Y, et al.2024. Cloning and expression analysis of oriental lily LiMYB2 gene[J]. Molecular Plant Breeding, 22(06): 1807-1814.) [5] 景艳军, 林荣呈. 2017. 我国植物光信号转导研究进展概述[J]. 植物学报, 52(03): 257-270. (Jing Y J, Lin R C.2017. Advances in light signaling transduction research in China[J]. Chinese Bulletin of Botany, 52(03): 257-270.) [6] 刘洋. 2016. 百合COP1和SPA对光的响应及在花香形成中的作用[D]. 硕士学位论文, 华南农业大学, 导师: 范燕萍, pp. 6-11. (Liu Y.2016. The light response of COP1 fragrance biosynthesis and SPA and their roles in of Lilium 'Siberia'[D]. Thesis for M.S., South China Agricultural University, Supervisor: Fan Y P, pp. 6-11.) [7] 邵婉璐, 李月灵, 高松, 等. 2018. 光照强度对成熟红颜草莓果实着色和花青素生物合成的影响及可能的分子机制[J]. 植物研究, 38(05): 661-668. (Shao W L, Li Y L, Gao S, et al.2018. Effects of light intensity on the fruit coloration and anthocyanian biosynthesis in Fragaria×ananassa Duch. 'Benihoppe' and the possible molecular mechanism[J]. Bulletin of Botanical Research, 38(05): 661-668.) [8] 王峰, 王秀杰, 赵胜男, 等. 2020. 光对园艺植物花青素生物合成的调控作用[J]. 中国农业科学, 53(23): 4904-4917. (Wang F, Wang X J, Zhao S N, et al.2020. Light regulation of anthocyanin biosynthesis in horticultural crops[J]. Scientia Agricultura Sinica, 53(23): 4904-4917.) [9] 王江昱, 田淑婷, 张涵, 等. 2022. 单子叶观赏植物花青素苷呈色机制研究进展[J]. 扬州大学学报(农业与生命科学版), 43(05): 101-114. (Wang J Y, Tian S T, Zhang H, et al.2022. Coloring mechanism of anthocyanin in monocot ornamental plants[J]. Journal of Yangzhou University (Agriculture and Life Sciences Edition), 43(05): 101-114.) [10] 王丽娟, 赵佳利, 杨姣, 等. 2022. 苦荞COP1基因的生物信息学分析及参与花色苷合成研究[J]. 西南农业学报, 35(09): 1977-1985. (Wang L J, Zhao J L, Yang J, et al.2022. Bioinformatics analysis of COP1 gene in tartary buckwheat and its involvement in anthocyanin synthesis[J]. Southwest China Journal of Agricultural Sciences, 35(09): 1977-1985.) [11] 王青, 吕彤, 吕英民. 2021. 百合花被片的结构和色素成分对花色的影响[J]. 园艺学报, 48(10): 1873-1884. (Wang Q, Lv T, Lv Y M.2021. The impact of tepal structure and pigment composition on the flower colour of lily[J]. Acta Horticulturae Sinica, 48(10): 1873-1884.) [12] 肖伟, 张铭芳, 张秀海, 等. 2018. 百合花青素合成调控的研究进展[J]. 北方园艺, (20): 154-162. (Xiao W, Zhang M F, Zhang X H, et al. 2018. Research progress of anthocyanin synthesis regulation of lily[J]. Northern Horticulture, (20): 154-162.) [13] 杨捷. 2022. 东方百合花青素苷生物合成转录调控机制的研究[D]. 博士学位论文, 北京林业大学, 导师: 袁涛. pp. 21. (Yang J. 2022. Transcriptional regulation mechanism of anthocyanin biosynthesis in oriental hybrid lily[D]. Thesis for M.S., Beijing Forestry University, Supervisor: Yuan T, pp. 21) [14] 杨立文, 付建新, 亓帅, 等. 2015. 高等植物开花时间的蓝光调控: 隐花色素介导的光信号传导[J]. 分子植物育种, 13(02): 450-460. (Yang L W, Fu J X, Qi S, et al.2015. Blue light regulating flowering time in higher plants: Cryptochromes meated signal transduction[J]. Molecular Plant Breeding, 13(02): 450-460.) [15] 姚帅涛. 2023. 玉米ZmSPAs基因的克隆和功能初探[D]. 硕士学位论文, 河南农业大学, 导师: 杨建平, pp. 3-5. (Yao S T.2023. Cloning and functional analysis of ZmSPAs gene in maize[D]. Thesis for M.S., Henan Agricultural University, Supervisor: Yang J P, pp. 3-5.) [16] 庄维兵, 刘天宇, 束晓春, 等. 2018. 植物体内花青素苷生物合成及呈色的分子调控机制[J]. 植物生理学报, 54(11): 1630-1644. (Zhuang W B, Liu T Y, Shu X C, et al.2018. The molecular regulation mechanism of anthocyanin biosynthesis and coloration in plants[J]. Plant Physiology Journal, 54(11): 1630-1644.) [17] Bhatnagar A, Singh S, Khurana J P, et al.2020. HY5-COP1: The central module of light signaling pathway[J]. Journal of Plant Biochemistry and Biotechnology, 29(4): 590-610. [18] Albert N W, Lewis D H, Zhang H B, et al.2011. Members of an R2R3-MYB transcription factor family in Petunia are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning[J]. The Plant Journal, 65(5): 771-784. [19] An J P, Qu F J, Yao J F, et al.2017. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple[J]. Horticulture Research, 4(1): 17023. [20] Andrea M, Daniela W, Roberta B, et al.2013. Novel phenotypes related to the breeding of purple-fruited tomatoes and effect of peel extracts on human cancer cell proliferation[J]. Plant Physiology and Biochemistry, 72: 125-133. [21] Cominelli E, Gusmaroli G, Allegra D, et al.2008. Expression analysis of anthocyanin regulatory genes in response to different light qualities in Arabidopsis thaliana[J]. Journal of Plant Physiology, 165(8): 886-894. [22] Dong H S, MyungGoo C, Keunhwa K, et al.2013. HY5 regulates anthocyanin biosynthesis by inducing the transcriptional activation of the MYB75/PAP1 transcription factor in Arabidopsis[J]. FEBS Letters, 587(10): 1543-1547. [23] Laubinger S, Fittinghoff K, Hoecker U.2004. The SPA quartet: a family of WD-repeat proteins with a central role in suppression of photomorphogenesis in Arabidopsis[J]. The Plant Cell, 16(9): 2293-2306. [24] Li Y Y, Mao K, Zhao C, et al.2012. MdCOP1 ubiquitin E3 ligases interact with MdMYB1 to regulate light-induced anthocyanin biosynthesis and red fruit coloration in apple[J]. Plant Physiology, 160(2): 1011-1022. [25] Maier A, Hoecker U.2015. COP1/SPA ubiquitin ligase complexes repress anthocyanin accumulation under low light and high light conditions[J]. Plant Signaling & Behavior, 10(1): e970440. [26] Maier A, Schrader A, Kokkelink L, et al.2013. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis[J]. The Plant Journal, 74(4): 638-651. [27] Mei Z X, Li Z Q, Lu X, et al.2023. Supplementation of natural light duration promotes accumulation of sugar and anthocyanins in apple (Malus domestica Borkh.) fruit[J]. Environmental and Experimental Botany, 205: 105133. [28] Meng X C, Wang X J.2004. Regulation of flower development and anthocyanin accumulation in Gerbera hybrida[J]. The Journal of Horticultural Science and Biotechnology, 79(1): 131-137. [29] Ponnu J, Riedel T, Penner E, et al.2019. Cryptochrome 2 competes with COP1 substrates to repress COP1 ubiquitin ligase activity during Arabidopsis photomorphogenesis[J]. Proceedings of the National Academy of Sciences of the USA, 116(52): 27133-27141. [30] Ranjan A, Dickopf S, Ullrich K K, et al.2014. Functional analysis of COP1 and SPA orthologs from Physcomitrella and rice during photomorphogenesis of transgenic Arabidopsis reveals distinct evolutionary conservation[J]. BMC Plant Biology, 14(1): 178. [31] Ute H.2017. The activities of the E3 ubiquitin ligase COP1/SPA, a key repressor in light signaling[J]. Current Opinion in Plant Biology, 37: 63-69. [32] Xu C J, Chang X, Hou Z, et al.2021. The origin of SPA reveals the divergence and convergence of light signaling in Archaeplastida[J]. Molecular Phylogenetics and Evolution, 161: 107175. [33] Yamagishi M.2020. White with partially pink flower color in Lilium cernuum var. album is caused by transcriptional regulation of anthocyanin biosynthesis genes[J]. Scientia Horticulturae, 260: 108880. [34] Yamagishi M.2021. High promoter sequence variation in subgroup 6 members of R2R3-MYB genes is involved in different floral anthocyanin color patterns in Lilium spp[J]. Molecular Genetics and Genomics, 296(4): 1005-1015. [35] Yamuangmorn S, Jumrus S, Jamjod S, et al.2022. Responses of purple rice variety to light intensities and soil zinc application on plant growth, yield and bioactive compounds synthesis[J]. Journal of Cereal Science, 106: 103495. [36] Yang J, Guo C, Chen F, et al.2024. Heat-induced modulation of flavonoid biosynthesis via a LhMYBC2-Mediated regulatory network in oriental hybrid lily[J]. Plant Physiology and Biochemistry, 214: 108966. [37] Yang J, Meng J, Liu X L, et al.2021. Integrated mRNA and small RNA sequencing reveals a regulatory network associated with flower color in oriental hybrid lily[J]. Plant Physiology and Biochemistry, 166(prepublish): 103-114.