Identification and Analysis of Stigma Exsertion Genes in Sterile Lines of Foxtail millet (Setarial italica)
WANG Juan-Fei1, MA Hui-Fang1, XUE Hong-Li1, ZHAO Xiong-Wei2, GUO Jie3, SHI Guan-Yan1*
1 Industrial Crop Institute/Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan 030000, China; 2 College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China; 3 College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
Abstract:Stigma exsertion of millet sterile lines is a key trait affecting the efficiency of hybrid seed production of foxtail millet (Setarial italica) hybrids. The longer stigma and more obvious exsertion, which is more valuable for the seed production yield of hybrid seeds. In this study, stigma exertion length was measured among sterile lines 'Jinfen line 21A', 'Jinfen line 92A', '8116A', 'EMS-1A' and 'Fen 33A', while 'Jinfen line 92A' was tested with longest stigma exsertion length (0.66 mm), 'Jinfen line 21A' had the shortest stigma exsertion (0.06 mm). A total of 12 comparable foxtail millet stigma exsertion genes were identified using homologous alignment analysis, encoding 461~1 272 amino acid residues with molecular weight ranging from 50.173 90~138.045 10 kD, isoelectric point ranging from 5.05 to 9.13, and instability coefficient ranging from 30.80 to 50.92. Phylogenetic tree analysis demonstrated that all protein could be divided into 4 groups, and members of the groups had similar motifs and conservative domains. The Seita.2G100300 was homologous to the rice stigma exsertion gene by phylogenetic analysis. Further analysis of Seita.2G100300 at the transcriptional level showed that the expression of the gene was significantly lower than the control at heading stage and significantly increased at flowering stage (P<0.05). Correlation analysis showed a significant positive correlation between the expression level of Seita.2G100300 with the stigma exsertion length in the sterile line 'Jinfen line 92A' and '8116A' (P<0.05). This study integrated the stigma exsertion length phenotype with the expression analysis of related genes, offering novel insights into the mechanism underlying stigma exsertion in male-sterile lines of foxtail millet.
[1] 陈冰嬬, 于淼, 葛占宇, 等. 2023. 春播早熟区高粱杂种优势群及杂种优势模式分析[J].作物学报, 49(2): 343-353.(Chen B R, Yu M, Ge Z Y, et al.2023. Analysis of heterotic groups and heterosis patterns of sorghum in early-maturing area[J]. Acta Agronomica Sinica, 49(2): 343-353.) [2] 顾周琳, 朱舟. 2023. 量化分析水稻杂种优势及杂交稻改良育种的遗传基础[J].科学通报, 68(28): 3727-3728.(Gu Z L, Zhu Z.2023. Quantitatively analyzing genetic basis of heterosis and genetic improvement in rice hybrid[J]. Chinese Science Bulletin, 68(28): 3727-3728.) [3] 郭岩, 陈伟, 姚金波, 等. 2018. 棉花柱头外露性状的花蕾形态学调查[J].中国棉花, 45(3): 26-29.(Guo Y, Chen W, Yao J B, et al.2018. Flower bud morphology survey of extruded stigma in cotton[J]. China Cotton, 45(3): 26-29.) [4] 贾冠清, 刁现民. 2017. 谷子(Setaria italica (L.) P. Beauv.)作为功能基因组研究模式植物的发展现状及趋势[J]. 生命科学, 29(3): 292-301.(Jia G Q, Diao X M.2017. Current status and perspectives of researches on foxtail millet (Setaria italica (L.) P. Beauv.): A potential model of plant functional genomics studies[J]. Chinese Bulletin of Life Sciences, 29(3): 292-301.) [5] 贾冠清, 刁现民. 2022. 中国谷子种业创新现状与未来展望[J]. 中国农业科学, 55(04): 653-665.(Jia G Q, Diao X M.2022. Current status and perspectives of innovation studies related to foxtail millet seed industry in China[J]. Scientia Agricultura Sinica, 55(04): 653-665.) [6] 江建华, 党小景, 姚文豪, 等. 2021. 水稻核不育系4个柱头性状的遗传分析[J]. 植物学报, 56(03): 284-295.(Jiang J H, Dang X J, Yao W H, et al.2021. Genetic analysis of four stigma traits with genic male sterile line in rice (Oryza sativa)[J]. Chinese Bulletin of Botany, 56(03): 284-295.) [7] 李宏生, 丁明亮, 顾坚, 等. 2014. 小麦温光敏核不育系柱头外露的遗传研究初报[J]. 西南农业学报, 27(6): 2726-2728.(Li H S, Ding M L, Gu J, et al.2014. Preliminary study on inheritance of stigma exertion in wheat thermo-photo sensitive genic male sterile line[J]. Southwest China Journal of Agricultural Sciences, 27(6): 2726-2728.) [8] 李素英, 刘丹, 李强, 等. 2018. 谷子杂交种产量及产量性状杂种优势的表现型鉴定[J]. 河南农业科学, 47(08): 28-34.(Li S Y, Liu D, Li Q, et al.2018. Phenotype identification in heterosis of yield and yield traits of foxtail millet hybrids[J]. Journal of Henan Agricultural Sciences, 47(08): 28-34.) [9] 李志华, 穆婷婷, 刘鑫, 等. 2018. 4个谷子不育系主要农艺性状的配合力分析[J]. 作物杂志, (03): 61-67.(Li Z H, Mu T T, Liu X, et al. 2018. Combining ability analysis of main agronomic characters of four millet sterile lines[J]. Crops, (03): 61-67.) [10] 麻慧芳, 史关燕, 杨成元, 等. 2021. 山西谷子优质不育系选育及杂交利用研究[J]. 安徽农业科学, 49(01): 26-30.(Ma H F, Shi G Y, Yang C Y, et al.2021. Research on selection and hybridization of Shanxi millet high-quality sterile lines[J]. Journal of Anhui Agricultural Sciences, 49(01): 26-30.) [11] 史关燕, 王啸旗, 韩渊怀, 等. 2021. 谷子产量和品质相关性状的杂种优势及遗传特性分析[J]. 热带亚热带植物学报, 3(05): 1-11.(Shi G Y, Wang X Q, Han Y H, et al.2021. Heterosis and genetic characteristics analysis for yield and quality related characters in Setaria italic[J]. Journal of Tropical and Subtropical Botany, 3(05): 1-11.) [12] 史关燕, 王娟菲, 麻慧芳, 等. 2022. 谷子杂交种产量与主要农艺性状的相关性及回归分析[J].作物杂志, (06): 82-87.(Shi G Y, Wang J F, Ma H F, et al. 2022. Correlation and regression analysis between yield and main agronomic traits in foxtail millet hybrids[J]. Crops, (06): 82-87.) [13] 孙蓉, 杨宇琭, 李亚军, 等. 2023. 谷子PLATZ转录因子基因家族的鉴定和分析[J]. 植物学报, 58(04): 548-55.(Sun R, Yang Y L, Li Y J, et al.2023. Genome-wide identification and analysis of PLATZ transcription factor gene family in foxtail millet[J]. Chinese Bulletin of Botany, 58(04): 548-55.) [14] 王晓明, 王峰. 2007. 谷子光(温)敏两系杂交种“张杂谷”系列品种简介[J]. 河北农业科技, (04): 20-21.(Wang X M, Wang F.2007. Introduction to the "Zhangza gu" series of varieties of millet with photoperiod-sensitive (thermo-) genic male sterile hybrid[J]. Hebei Agricultural Science and Technology, (04): 20-21.) [15] 王玉文, 李会霞, 田岗, 等. 2010. 谷子高异交结实雄性不育系的创制及应用[J]. 中国农业科学, 43(4): 680-689.(Wang Y W, Li H X, Tian G, et al.2010. Study on innovation and application of highly-male-sterile line with high outcrossing rate in millet[J]. Scientia Agricultura Sinica, 43(4): 680-689.) [16] 魏锋, 史大坤, 卫晓轶, 等. 2022. 不同玉米杂交种产量和品质性状的杂种优势分析[J]. 山东农业科学, 54(12): 25-30.(Wei F, Shi D K, Wei X Y, et al.2022. Heterosis analysis of yield and quality characters of different maize hybrids[J]. Shandong Agricultural Sciences, 54(12): 25-30.) [17] 谢卿. 2013. 甘蓝型油菜柱头外露突变材料的遗传分析[D]. 硕士论文, 西南大学, 导师: 李加纳, pp. 24-26.(Xie Q.2013. Genetic analyzing of the mutant material with stigma exposed in Brassica napus L.[D]. Thesis for M.S., Southwest University, Suppervisor: Li J N, pp. 24-26.) [18] 岳高红, 梅捍卫, 潘彬荣, 等. 2009. 杂交旱稻保持系沪旱1B柱头外露率的QTL定位[J]. 浙江农业学报, 21(03): 241-245.(Yue G H, Mei H W, Pan B R, et al.2009. Mapping of QTLs affecting stigma exsertion rate of Huhan 1B as a CMS maintainer of upland hybrid rice[J]. Acta Agriculturae Zhejiangensis, 21(03): 241-245.) [19] 赵团结, 盖钧镒. 2006. 大豆柱头外露突变体PAS-1的发现与遗传分析[J]. 南京农业大学学报, 29(4):15-18.(Zhao T J, Gai J Y.2006. Discovery and genetic analysis of a mutant with protruding stigma from anthers in soybean[J]. Journal of Nanjing Agricultural University, 29(4): 15-18.) [20] Chen C, Cao Q, Jiang Q, et al.2019. Comparative transcriptome analysis reveals gene network regulating cadmium uptake and translocation in peanut roots under iron deficiency[J]. BMC Plant Biology, 19(1): 35. [21] Cheng P, Wang J, Zhao Z, et al.2021. Molecular hydrogen increases quantitative and qualitative traits of rice grain in field trials[J]. Plants (Basel), 10(11): 2331. [22] Guo N, Wang Y, Chen W, et al.2022. Fine mapping and target gene identification of qSE4, a QTL for stigma exsertion rate in rice (Oryza sativa L.)[J]. Front Plant Science, 13: 959859. [23] Hermand V, Julio E, Dorlhac de Borne F, et al.2014. Inactivation of two newly identified tobacco heavy metal ATPases leads to reduced Zn and Cd accumulation in shoots and reduced pollen germination[J]. Metallomics, 6(8): 1427-1440. [24] Liu Y, Fu D, Kong D, et al.2022. Linkage mapping and association analysis to identify a reliable QTL for stigma exsertion rate in rice[J]. Front Plant Science, 13: 982240. [25] Liu Y, Zhang A N, Wang F M, et al.2019. Fine mapping a quantitative trait locus, qSER-7, that controls stigma exsertion rate in rice (Oryza sativa L.)[J]. Rice (N Y), 12(1): 46. [26] Norton G J, Travis A, Ruang-Areerate P, et al.2021. Genetic loci regulating cadmium content in rice grains[J]. Euphytica, 217(3): 35. [27] Takano-Kai N, Doi K , Yoshimura A. 2011. GS3 participates in stigma exsertion as well as seed length in rice[J]. Breeding Science, 61(3): 244-250. [28] Tan Q, Chen S, Gan Z, et al.2023. Grain shape is a factor affecting the stigma exsertion rate in rice[J]. Front Plant Science, 14: 1087285. [29] Tan Q Y, Bu S H, Chen G D, et al.2022. Reconstruction of the high stigma exsertion rate trait in rice by pyramiding multiple QTLs[J]. Frontiers in Plant Science, 13: 921700. [30] Yang M, Zhang Y, Zhang L, et al.2014. OsNRAMP5 contributes to manganese translocation and distribution in rice shoots[J]. Journal of Experimental Botany, 65(17): 4849-4861 [31] Zhou H, Li P B, Xie W B, et al.2017. Genome-wide association analyses reveal the genetic basis of stigma exsertion in rice[J]. Molecular Plant, 10: 634-644. [32] Zhu B, Li H, Xia X, et al.2020. ATP-binding cassette g transporters SGE1 and MTABCG13 control stigma exsertion[J]. Plant Physiology, 184(1): 223-235.