Abstract:Heat shock protein 20 (HSP20) is a class of small molecular proteins that play critical roles in responding to temperature and other abiotic stresses. Identification and analysis of AaHSP20 gene family members in Artemisia argyi is helpful to reveal the regulatory mechanism response to temperature. 24 AaHSP20 genes were identified by using bioinformatics, and their physicochemical properties, evolutionary relationships, expression patterns, and so on were analyzed. The results showed that the encoded proteins ranged from 155 to 215 amino acids (aa) in length, the molecular weight was 17.60~24.67 kD, and most were predicted to be located in the cytoplasm. The secondary structures of AaHSP20 proteins were mainly composed of α-helix and random coils. The 24 AaHSP20 genes were unevenly distributed across 10 chromosomes. Some AaHSP20 genes had collinear relationships with homologs in Arabidopsis thaliana and Lactuca sativa. Phylogenetic analysis showed that the 24 AaHSP20 proteins could be divided into 3 classes and 4 subfamilies. All AaHSP20 proteins contained conserved domains and motifs (motif 1 and motif 2), and most genes lacked introns. Protein interaction analysis suggested AaHSP20 might interact with other small heat shock proteins. qRT-PCR analysis demonstrated that 5 candidate AaHSP20 genes exhibited distinct expression patterns in different tissues. AaHSP20-2, AaHSP20-7, AaHSP20-16, and AaHSP20-21 were sensitive to both high and low temperatures, while AaHSP20-20 was only sensitive to high temperature. These findings provide a theoretical foundation for elucidating the functions of AaHSP20 genes and improving resistance breeding of A. argyi.
臧巧路, 郑晓美, 柳璐王梦苗如意. 艾草HSP20基因家族鉴定及分析[J]. 农业生物技术学报, 2025, 33(11): 2391-2403.
ZANG Qiao-Lu, ZHENG Xiao-Mei, LIU Lu WANG Meng MIAO Ru-Yi. Identification and Analysis of HSP20 Gene Family in Artemisia argyi. 农业生物技术学报, 2025, 33(11): 2391-2403.
[1] 顾海科, 刘桂君, 宋梅芳. 2018. 艾草标准化人工栽培技术[J]. 现代农业科技, (4): 89-93. (Gu H K, Liu G J, Song M F. 2018. Standard cultivation technique for Artemisia argyi[J]. Modern Agricultural Science and Technology, (4): 89-93.) [2] 黄思沛, 黄德娅, 付连郭, 等. 2023. 拟南芥Hsp20基因家族的特征及其在干旱和盐胁迫下的表达分析[J]. 生命科学研究, 27(02): 162-169. (Huang S P, Huang D Y, Fu L G, et al.2023. Characteristics of Arabidopsis thaliana Hsp20 gene family and its expression analysis under drought and salt stress[J]. Life Science Research, 27(02): 162-169.) [3] 蒋小洁, 陈贻豪, 宋紫欣, 等. 2023. 艾草的药理作用及其机制研究进展[J]. 华夏医学, 36(06): 182-188. (Jiang X J, Chen Y H, Song Z X, et al.2023. Research progress in the pharmacology and mechanism of Artemisia argyi[J]. Acta Medicinae Sinica, 36(06): 182-188.) [4] 李文杰, 杨慧鑫, 胡丽, 等. 2025. 水稻中HSP20家族基因鉴定及表达[J]. 应用与环境生物学报, 31(08): 1238-1248. (Li W J, Yang H X, Hu L, et al.2024. Identification and expression analysis of HSP20 family genes in Oryza sativa[J]. Chinese Journal of Applied and Environmental Biology, 31(08): 1238-1248.) [5] 梁伦平, 冯庭, 马赛, 等. 2024. 水稻HSP20家族的群体基因组差异及功能单倍型分析[J]. 分子植物育种, 22(14): 4534-4548. (Liang L P, Feng T, Ma S, et al.2024. Population genomic difference and functional haplotype analysis of HSP20 gene family in rice[J]. Molecular Plant Breeding, 22(14): 4534-4548.) [6] 马圆, 刘欢, 赵桂琴, 等. 2024. 燕麦sHSP基因家族的鉴定及其响应高温及老化的表达分析[J]. 草业学报, 33(08): 145-158. (Ma Y, Liu H, Zhao G Q, et al.2024. Identification of the oat sHSP gene family and its transcript profiles in response to high temperature and aging[J]. Acta Prataculturae Sinica, 33(08): 145-158.) [7] 门淑珍, 李桂忱, 温馨雨. 2024. 植物热激蛋白功能及表达调控的研究进展[J]. 聊城大学学报(自然科学版), 37(03): 69-79. (Meng S Z, Li G C, Wen X Y, et al.2024. Research progress on function and expression regulation of plant heat shock proteins[J]. Journal of Liaocheng University (Nature Science Edition), 37(03): 69-79.) [8] 任静敏, 伍国强, 张鑫苗, 等. 2025. 植物SnRK1调控逆境胁迫响应和生长发育的作用机制[J]. 生物工程学报, 41(07): 2579-2595. (Ren J M, Wu G Q, Zhang X M, et al.2025. Mechanisms of SnRK1 in regulating the stress responses, growth, and development of plants[J]. Chinese Journal of Biotechnology, 41(07): 2579-2595.) [9] 宋奇琦, 张小秋, 宋修鹏, 等. 2022. 甘蔗HSP20基因克隆、原核表达及逆境胁迫响应[J]. 植物生理学报, 58(02): 371-380. (Song Q Q, Zhang X Q, Song X P, et al.2022. Cloning and prokaryotic expression of sugarcane HSP20 gene and its responses to adversity stress[J]. Plant Physiology Journal, 58(02): 371-380.) [10] 苏晴, 茹振钢, 秦志英, 等. 2013. 小热激蛋白基因(hsp23.5) 在小麦BNS雄性不育系和转换系中的差异表达[J]. 农业生物技术学报, 21(01): 29-37. (Su Q, Ru Z G, Qin Z Y, et al.2013. Differential expression of small heat shock protein gene (hsp23.5) between wheat (Triticum aestivum) BNS male sterile line and its conversion line[J]. Journal of Agricultural Biotechnology, 21(01): 29-37.) [11] 王军利, 果秋婷, 张洁, 等. 2024. 艾草及其在中医农业方面的应用[J]. 现代园艺, 47(17): 80-82. (Wang J L, Guo Q T, Zhang J, et al.2024. Artemisia argyi and its application in traditional chinese medicine agriculture[J]. Modern Horticulture, 47(17): 80-82.) [12] 奚玉培, 张志忠, 王景荣, 等. 2019. 马铃薯HSP17.7基因的克隆及其对高温逆境的响应[J]. 西北植物学报, 39(11): 1952-1960. (Xi Y P, Zhang Z Z, Wang J R, et al.2019. Cloning of HSP17.7 gene and its response to high temperature stress in potato[J]. Acta Botanica Boreali-Occidentalia Sinica, 39(11): 1952-1960.) [13] 张宁, 姜晶, 史洁玮. 2017. 番茄HSP20基因家族的全基因组鉴定、系统进化及表达分析[J]. 沈阳农业大学学报, 48(2): 137-144. (Zhang N, Jiang J, Shi J W.2017. Genome-wide identification, phyletic evolution and expression analysis of HSP20 gene family in tomato[J]. Journal of Shenyang Agricultural University, 48(2): 137-144.) [14] 张新学. 2023. 西北旱作区艾草绿色增效栽培技术[J]. 农业科技与信息, (10): 27-30. (Zhang X X. 2023. Green cultivation techniques of Artemisia argyi in the northwest arid region[J]. Agricultural Technology and Information, (10): 27-30.) [15] 周泽民, 马超, 赵权, 等. 2021. 艾草生长的气象环境条件与随州气候适应性研究[J]. 安徽农学通报, 27(05): 24-28. (Zhou Z M, Ma C, Zhao Q, et al.2021. Study on meteorological environment conditions of wormwood growth and climate adaptability in Suizhou city[J]. Anhui Agricultural Science Bulletin, 27(05): 24-28.) [16] Bashae, O' neill H, Vierling E.2012. Small heat shock proteins and α-crystallins: Dynamic proteins with flexible functions[J]. Trends in Biochemical Sciences, 37(3): 106-117. [17] Chen C, Chen H, Zhang Y, et al.2020. TBtools: An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 1194-1202. [18] Cingoz G S, Gurel E.2016. Effects of salicylic acid on thermotolerance and cardenolide accumulation under high temperature stress in Digitalis trojana Ivanina[J]. Plant Physiology and Biochemistry, 105: 145-149. [19] Hua Y, Liu Q, Zhai Y, et al.2023.Genome-wide analysis of the HSP20 gene family and its response to heat and drought stress in Coix (Coix lacryma-jobi L.)[J]. BMC Genomics, 24(1): 478-494. [20] Ji X, Yu Y, Ni P, et al.2019. Genome-wide identification of small heat-shock protein (HSP20) gene family in grape and expression profile during berry development[J]. BMC Plant Biology, 19(1): 433-448. [21] Li J, Zhang J, Jia H, et al.2016. The Populus trichocarpa PtHSP17.8 involved in heat and salt stress tolerances[J]. Plant Cell Reports, 35(8): 1587-99. [22] Li M, Chai X, Wang L, et al.2019. Study of the variation of phenolic acid and flavonoid content from fresh Artemisiae argyi Folium to moxa wool[J]. Molecules.24(24):4603-4616. [23] Lian X, Wang Q, Li T, et al.2022. Phylogenetic and transcriptional analyses of the HSP20 gene family in peach revealed that PpHSP20-32 is involved in plant height and heat tolerance[J]. International Journal of Molecular Sciences, 23(18): 10849-10865. [24] Maziak A, Heidorn-Czarna M, Weremczuk A, et al.2021. FTSH4 and OMA1 mitochondrial proteases reduce moderate heat stress-induced protein aggregation[J]. Plant Physiology, 187(2): 769-786. [25] Ohama N, Sato h, Shinozaki K, et al.2017. Transcriptional regulatory network of plant heat stress response[J]. Trends in Plant Science, 22(1): 53-65. [26] Ré M D, Gonzalez C, Escobar M R, et al.2017. Small heat shock proteins and the postharvest chilling tolerance of tomato fruit[J]. Physiologia Plantarum, 159(2): 148-160. [27] Yao F, Song C, Wang H, et al.2020. Genome-wide characterization of the HSP20 gene family identifies potential members involved in temperature stress response in apple[J]. Frontiers in Genetics, 11: 609184-609196. [28] Zhang N, Zhao H, Shi J, et al.2020. Functional characterization of classⅠSlHSP17.7 gene responsible for tomato cold-stress tolerance[J]. Plant Science, 298: 110568-110592. [29] Zhang Q, Dai B, Fan M, et al.2024. Genome-wide profile analysis of the Hsp20 family in lettuce and identification of its response to drought stress[J]. Frontiers in Plant Science, 15: 1426719-1426734. [30] Zhao P, Wang D, Wang R, et al.2018. Genome-wide analysis of the potato Hsp20 gene family: Identification, genomic organization and expression profiles in response to heat stress[J]. BMC Genomics, 9(1): 61-74.