Response Characteristics of Bacterial Diversity and Enzyme Activity in Continuous Cropping Soil of Pitaya (Hylocereus undatus) to Phenolic Acid Metabolites
XIE Yong-Jun1, QIN Wen-Lian1, ZHOU Jing2, WANG Meng-Jia1, PAN Xiao-Zhuo1, QIN Xiao-Jie1, TANG Jing-Mei2, WANG Yi-Bing1,*
1 College of Marine Science and Biotechnology/Guangxi Key Laboratory of Polysaccharide Materials and Modification, Guangxi University for Nationalities, Nanning 530008, China; 2 Guangxi South Subtropical Agricultural Sciences Research Institute, Chongzuo 532400, China
Abstract:As the planting years of pitaya (Hylocereus undatus) increase, phenolic acid metabolites gradually accumulate in the soil, promoting the colonization of pathogenic bacteria, fungi, and nematodes, eventually causing continuous cropping obstacles. In this study, culturable bacteria were isolated from the rhizosphere soil of pitaya continuously cultivated for 6 years and 3 years using pure culture technique, and species identification was conducted through 16S rRNA gene sequencing. At the same time, soil enzyme activity assays were conducted to investigate changes in enzyme activity in pitaya soil over different planting durations, high performance liquid chromatography (HPLC) was utilized to identify and quantify the types and contents of phenolic acid metabolites in the soil, and the response characteristics of soil bacteria and enzyme activity to phenolic acid metabolites were analyzed. The results indicated that continuous cropping increased the diversity of bacterial communities in pitaya soil, a total of 112 strains, including 4 phyla, 5 classes, 10 orders, 16 families, 21 genera, 56 species, were isolated from the rhizosphere soil, among which the relative abundance of biocontrol bacteria such as Pseudomonas, Burkholderia, and Bacillus decreased by 23.36%. In continuous cropping pitaya soil, catalase and cellulase activities decreased, whereas urease and sucrase activities increased, and the levels of gallic acid, ferulic acid, salicylic acid, and benzoic acid increased by 163.80%, 194.92%, 341.57% and 175.93%, respectively. Response relationship analysis showed that there was a certain correlation between phenolic acids and microbial community structure. The above results demonstrated that continuous cropping led to the accumulation of phenolic acids, including gallic acid, ferulic acid, salicylic acid, and benzoic acid, then caused an imbalance in the soil microbial community structure, a reduction in beneficial microorganisms, changes in soil enzyme activity, impaired nutrient absorption by plants, and ultimately resulted in continuous cropping obstacles. This study provides basic data for the subsequent development of microbial agents with phenolic acid degradation function and field management techniques for pitaya.
[1] 陈福慧, 谢勇俊, 贾清文, 等. 2023. 林下连作种植参根际土壤可培养微生物区系及细菌群落对酚酸类化感物质的响应[J]. 广西科学, 30(03): 468-477. (Chen F H, Xie Y J, Jia Q W, et al.2023. Response of culturable microflora and bacterial community to phenolic allelochemica in rhizosphere soil of continuous cropping Panax ginseng C.A.Meyer under forest[J]. Guangxi Sciences, 30(03): 468-477.) [2] 陈彭坤, 赵志平, 易小艳, 等. 2023. 国内火龙果种子研究进展[J]. 热带农业科技, 46(04): 31-36. (Chen P K, Zhao Z P, Yi X Y, et al.2023. The progress in research of pitaya seed in China[J]. Tropical Agricultural Science & Technology, 46(04): 31-36.) [3] 陈睿, 崔泽远, 李志, 等. 2024. AM真菌对连作土壤上作物生长影响的研究进展[J]. 中国农学通报, 40(06): 1-8. (Chen R, Cui Z Y, Li Z, et al.2024. Chinese Agricultural Science Bulletin, 40(06): 1-8.) [4] 戴昌金, 翟勤. 2023. 6种芽孢杆菌微生物菌剂对甜瓜枯萎病田间防治效果及产量的影响研究[J]. 特种经济动植物, 26(08): 24-27. (Dai C J, Zhai Q.2023. Effect of 6 kinds of Bacillus microbial agents on field control and yield of muskmelon fusarium wilt[J]. Special Economic Animals and Plants, 26(08): 24-27.) [5] 高瑞敏, 严君, 邹狮, 等. 2023. 氮肥对大豆根际土壤微生物群落和代谢的影响[J]. 土壤与作物, 12(04): 373-384. (Gao R M, Yan J, Zou S, et al.2023. Effects of nitrogen fertilizer on microbial community and metabolism in rhizosphere soil of soybean[J]. Soils and Crop, 12(04): 373-384.) [6] 高远, 李隔萍, 施宏, 等. 2017. 感染内生真菌的羽茅对大针茅的化感作用[J]. 生态学报, 37(04): 1063-1073. (Gao Y, Li G P, Shi H, et al.2017. Allelopathic effect of endophyte-infected Achnatherum sibiricum on Stipa grandis[J]. Acta Ecologica Sinica, 37(04): 1063-1073.) [7] 黄韬睿, 郑立新, 雷健, 等. 2022. 红心火龙果富硒红茶复合饮料加工工艺[J]. 食品工业, 43(05): 25-28. (Huang T R, Zheng L X, Lei J, et al.2022. The processing technology of compound beverage with red pitaya and selenium enriched black tea[J]. The Food Industry, 43(05): 25-28.) [8] 李崇玮, 柏新富, 陈国忠, 等. 2021. 不同恢复年限老参地土壤养分以及酚酸类代谢物含量差异[J]. 植物生态学报, 45(11): 1263-1274. (Li C W, Bai X F, Chen G Z, et al.2021. Differences in soil nutrients and phenolic acid metabolites contents in American ginseng cultivated soils with different restoration years[J]. Chinese Journal of Plant Ecology, 45(11): 1263-1274.) [9] 李冠喜, 吴小芹, 叶建仁. 2013. 杨树根际土自毒物质的积累、毒害及生物修复[J]. 南京林业大学学报(自然科学版), 37(03): 71-76. (Li G X, Wu X Q, Ye J R.2013. Accumulation, toxic properties and bioremediation of autotoxic substance in poplar rhizosphere soil[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 37(03): 71-76.) [10] 李文革, 刘志坚, 谭周进, 等. 2006. 土壤酶功能的研究进展[J]. 湖南农业科学, (06): 34-36. (Li W G, Liu Z J, Tan Z J, et al. 2006. Research progress of soil enzyme function[J]. Hunan Agricultural Sciences, (06): 34-36.) [11] 凌宇, 冯启佳, 孙小艳, 等. 2022. 耐盐促生菌的筛选及其对狗牙根耐盐性的影响[J]. 草业科学, 39(11): 2297-2306. (Ling Y, Feng Q J, Sun X Y, et al.2022. Screening and identification of salt-tolerant and growth-promoting microbial strains in the rhizosphere and their effect on the salt tolerance of Bermuda grass[J]. Pratacultural Science, 39(11): 2297-2306.)前无 [12] 马晓晓, 张祥会, 黄敏, 等. 2021. 果树连作对土壤微生物多样性的影响[J]. 安徽农业科学, 49(21): 15-18. (Ma X X, Zhang X H, Huang M, et al.2021. Effects of continuous cropping of fruit trees on soil microbial diversity[J]. Journal of Anhui Agricultural Sciences, 49(21): 15-18.) [13] 彭少麟, 邵华. 2001. 化感作用的研究意义及发展前景[J]. 应用生态学报, 12(05): 780-786. (Peng S L, Shao H.2001. Research significance and foreground of allelopathy[J]. Chinese Journal of Applied Ecology, 12(05): 780-786.) [14] 乔慧, 蒙仲举, 王宁, 等. 2022. 锡林郭勒不同草原类型土壤养分与植物群落特征[J]. 农业与技术, 42(24): 61-65. (Qiao H, Meng Z J, Wang N, et al.2022. Characteristics of soil nutrients and plant communities in different grassland types in Xilin Gol[J]. Agriculture and Technology, 42(24): 61-65.) [15] 史倩. 2024. 食品防腐剂的研究进展[J]. 食品安全导刊, (21): 179-182. (Shi Q. 2024. Research progress on food preservatives[J]. China Food Safety Magazine, (21): 179-182.) [16] 宋晓兵, 朱晓峰, 崔一平, 等. 2022. 广东火龙果主要病虫害及综合防控技术[J]. 热带农业科学, 42(07): 68-73. (Song X B, Zhu X F, Cui Y P, et al.2022. Integrated control techniques of major diseases and insect pests of pitaya in Guangdong[J]. Chinese Journal of Tropical Agriculture, 42(07): 68-73.) [17] 王景荣. 2020. 褪黑素缓解甜瓜肉桂酸胁迫及其机理研究[D]. 硕士学位论文, 福建农林大学, 导师: 张志忠, pp. 45-56. (Wang J R.2020. Alleviating effect of melatonin on cinnamic acid stress in melon and its mechanism[D]. Thesis for M.S., Fujian Agriculture and Forestry University, Supervisor: Zhang Z Z, pp. 45-56.) [18] 王楠, 廖永琴, 施竹凤, 等. 2024. 三株无量山森林土壤芽孢杆菌鉴定及其生物活性挖掘[J]. 生物技术通报, 40(2): 277-288. (Wang N, Liao Y Q, Shi Z F, et al.2024. Identification of three strains of Bacillus from the forest soil of Wuliang mountain and mining of their bioactivities[J]. Biotechnology Bulletin, 40(2): 277-288.) [19] 王胜男. 2021. 西南山区烤烟连作对土壤微生物多样性的影响及机制研究[D]. 博士学位论文, 西北农林科技大学, 导师: 廖允成, pp. 39-47. (Wang S N.2021. The mechanism of soil microbial communities diversity on the continuous cropping of flue-cured tobacco in the mountainous areas of southwest China[D]. Thesis for Ph.D., Northwest A&F University, Supervisor: Liao Y C, pp. 39-47.) [20] 王天佑, 丁万隆, 尹春梅, 等. 2021. 不同栽培年限人参根区土壤养分酶活性及微生物量的变化[J]. 中国现代中药, 23(11): 1927-1933. (Wang T R, Ding W L, Yin C M, et al.2021. Dynamics of soil nutrients, enzyme activity, and microbial biomass in rhizosphere of Panax ginseng of different growing years[J]. Modern Chinese Medicine, 23(11): 1927-1933.) [21] 王晓宝, 王功帅, 刘宇松, 等. 2018. 西北黄土高原地区苹果连作障碍与土壤真菌群落结构的相关性分析[J]. 园艺学报, 45(05): 855-864. (Wang X B, Wang G S, Liu Y S, et al.2018. Correlation analysis of apple replant disease and soil fungal community structure in the northwest loess plateau area[J]. Acta Horticulturae Sinica, 45(05): 855-864.) [22] 谢勇俊, 潘小卓, 陈福慧, 等. 2024. 人参酚酸类自毒物质降解菌的筛选鉴定及生防研究[J]. 中国农业科技导报, 26(07): 147-155. (Xie Y J, Pan X Z, Chen F H, et al.2024. Screening, identification and biocontrol of bacteria degrading ginseng phenolic acid autotoxic substances[J]. Journal of Agricultural Science and Technology, 26(07): 147-155.) [23] 薛超, 黄启为, 凌宁, 等. 2011. 连作土壤微生物区系分析、调控及高通量研究方法[J]. 土壤学报, 48(03): 612-618. (Xue C, Huang Q W, Ling N, et al.2011. Methods for analysis, regulation and high throughput study of soil microflora in continuous cropping[J]. Acta Pedologica Sinica, 48(03): 612-618.) [24] 颜晓捷, 黄坚钦, 邱智敏, 等. 2011. 生草栽培对杨梅果园土壤理化性质和果实品质的影响[J]. 浙江农林大学学报, 28(06): 850-854. (Yan X J, Huang J Q, Qiu Z M, et al.2011. Soil physical and chemical properties and fruit quality with grass cover in a Myrica rubra orchard[J]. Journal of Zhejiang A&F University, 28(06): 850-854.) [25] 杨兰芳, 曾巧, 李海波, 等. 2011. 紫外分光光度法测定土壤过氧化氢酶活性[J]. 土壤通报, 42(01): 207-210. (Yang L F, Zeng Q, Li H B, et al.2011. Measurement of catalase activity in soil by ultraviolet spectrophotometry[J]. Chinese Journal of Soil Science, 42(01): 207-210.) [26] 姚姿婷, 贤小勇, 李瑞芳, 等. 2023. 火龙果溃疡病研究进展[J]. 植物保护, 49(04): 1-5. (Yao Z T, Xian X Y, Li R F, et al.Advances in pitaya canker disease[J]. Plant Protection, 49(04): 1-5.) [27] 尹晓宁, 刘芬, 马明, 等. 2023. 苹果园重茬障碍机理研究进展[J]. 寒旱农业科学, 2(12): 1085-1096. (Yin X N, Liu F, Ma M, et al.2023. Progress on the mechanism of replant disease in apple orchard[J]. Journal of Cold-Arid Agricultural Sciences, 2(12): 1085-1096.) [28] 游川, 杨天杰, 周新刚, 等. 2024. 连作根系分泌物加剧土传病害的机制和缓解措施研究进展[J]. 土壤学报, 61(05): 1201-1211. (You C, Yang T J, Zhou X G, et al.2024. Research advances on mechanisms and preventions of soil-borne diseases exacerbated by root exudates in continuous cropping systems[J]. Acta Pedologica Sinica, 61(05): 1201-1211.) [29] 曾金兴, 黎忠杰, 佟硕秋, 等. 2021. 火龙果致腐菌的分离鉴定及生物拮抗防腐措施[J]. 微生物学通报, 48(06): 2008-2020. (Zeng J X, Li Z J, Tong S Q, et al.2021. Isolation and identification of pitaya spoilage fungi and the measures of biological antagonistic anticorrosion[J]. Microbiology China, 48(06): 2008-2020.) [30] 张瀚, 杨福孙, 胡文斌, 等. 2022. 火龙果果实生长及内含物变化规律[J]. 江苏农业科学, 50(11): 161-168. (Zhang H, Yang F S, Hu W B, et al.2022. Fruit growth and contents change of pitaya fruit[J]. Jiangsu Agricultural Sciences, 50(11): 161-168.) [31] 张萍, 刘园, 吴疆, 等. 2023. 植烟土壤改良措施研究进展[J]. 现代农业科技, (15): 138-141. (Zhang P, Liu Y, Wu J, et al. 2023. Research progress on improvement measures for tobacco planting soil[J]. Modern Agricultural Science and Technology, (15): 138-141.) [32] 张胜男, 武美华, 逄玉万, 等. 2024. 连作障碍土壤改良措施研究进展[J]. 热带农业科学, 44(01): 96-102. (Zhang S N, Wu M H, Pang Y W, et al.2024. Research progress on soil improvement measures for continuous cropping obstacles[J]. Chinese Journal of Tropical Agriculture, 44(01): 96-102.) [33] 张文影. 2014. 采煤复垦区土壤酶活性特征及重金属污染评价—以淮南新庄孜矿为例[D]. 硕士学位论文, 安徽理工大学, 导师: 姚多喜, pp. 19-28. (Zhang W Y.2014. Study on characteristics of the soil enzyme activity and evaluation of the heavy metal pollution in reclaimed soil of coal mine-take Xinzhuangzi mine for example[D]. Thesis for M.S., Anhui University of Science and Technology, Supervisor: Yao D X, pp. 19-28.) [34] 张莹, 李章胜, 毛碧增. 2016. 生防芽孢杆菌分泌的拮抗物质的研究进展[J]. 浙江农业科学, 57(12): 1960-1967. (Zhang Y, Li Z S, Mao B Z.2016. Research progress of antagonistic substances secreted by biocontrol Bacillus[J]. Journal of Zhejiang Agricultural Sciences, 57(12): 1960-1967.) [35] 周少猛. 2018. 不同酚酸浓度和有机碳肥施用量对马铃薯植株生长和土壤环境的影响[D]. 硕士学位论文, 四川农业大学, 导师: 郑顺林, pp. 2-21. (Zhou S M.2018. Effects of different phenolic acid concentrations and organic carbon fertilizer on potato plant growth and soil environment[D]. Thesis for M.S., Sichuan Agricultural University, Supervisor: Zheng S L, pp. 2-21.) [36] 周信雁, 杨尚东. 2024. 番茄连作土壤中微生物群落的变化特征及其重塑研究进展[J]. 华中农业大学学报, 43(01): 1-8. (Zhou X Y, Yang S D.2024. Progress on changing characteristics and reconstruction of microbial communities in soil under tomato continuous cropping[J]. Journal of Huazhong Agricultural University, 43(01): 1-8.) [37] 周艳冰, 崔宁洁, 郭翼欣, 等. 2022. 牡丹不同连栽年限对土壤酶活性的影响[J]. 四川农业科技, (07): 45-49. (Zhou Y B, Cui N J, Guo Y X, et al. 2022. Effects of different consecutive planting years of peony on soil enzyme activity[J]. Sichuan Agricultural Science and Technology, (07): 45-49.) [38] 邹敏, 周玉和, 林振业, 等. 2022. 火龙果根螨的为害规律和防治方法[J]. 中国南方果树, 51(02): 172-173, 176. (Zou M, Zhou Y H, Lin Z Y, et al.2022. The damage pattern and control method of pitaya root mites[J]. South China Fruits, 51(02): 172-173, 176.) [39] Akbar A S S, Rashtbari M.2012. The effects of carbonates removal on adsorption, immobilization and activity of cellulase in a calcareous soil[J]. Geoderma, 173-174: 145-151. [40] Bae S, Kim S G, Kim Y H.2013. Biocontrol characteristics of Bacillus species in suppressing stem rot of grafted cactus caused by Bipolaris cactivora[J]. The Plant Pathology Journal, 29(1): 42-51. [41] Duncan R E, Carrillo D, Peña J E.2021. Pitaya (dragon fruit)(Hylocereus undatus) pests and beneficial insects[J]. Extension Data Information Source, (1): 13. [42] Geeta C, Inhyup K, Taegun S.2022. Gottfriedia endophyticus sp. nov., a novel indole-acetic acid producing bacterium isolated from the roots of rice plant[J]. Antonie van Leeuwenhoek, 115(7): 943-952. [43] Hou Q, Wang W, Yang Y, et al.2020. Rhizosphere microbial diversity and community dynamics during potato cultivation[J]. European Journal of Soil Biology, 98: 103176. [44] Huang L F, Song L X, Xia X J, et al.2013. Plant-soil feedbacks and soil sickness: From mechanisms to application in agriculture[J]. Journal of Chemical Ecology, 39(2): 232-242. [45] Kandeler E, Gerber H.1988. Short-term assay of soil urease activity using colorimetric determination of ammonium[J]. Biology and Fertility of Soils, 6: 68-72. [46] Mahmoud M F, Pritsch K, Siani R, et al.2024. Comparative genomic analysis of strain Priestia megaterium B1 reveals conserved potential for adaptation to endophytism and plant growth promotion[J]. Microbiology Spectrum, 12(8): e0042224. [47] Roberto S, Georg S, Caroline G, et al.2021. Acidovorax pan-genome reveals specific functional traits for plant beneficial and pathogenic plant-associations[J]. Microbial Genomics, 7(12): 000666. [48] Wang K G, Lu Q F, Dou Z C, et al.2024. A review of research progress on continuous cropping obstacles[J]. Frontiers of Agricultural Science and Engineering, 11(02): 253-270. [49] Xue J, Wu F Z, Zhou X G.2020. Different toxic effects of ferulic and P-hydroxybenzoic acids on cucumber seedling growth were related to their different influences on rhizosphere microbial composition[J]. Biology and Fertility of Soils, 56(1): 125-136.