Identification of Candidate Genes Related to Fruit Traits Using InDel Markers of Tomato (Solanum lycopersicum)
DONG Jie1, WANG Na2, HUO Shun-Li1, LI Ning2, YU Qing-Hui2,*
1 Bayingolin Mongolian Autonomous Prefecture Academy of Agricultural Sciences, Bayingolin Mongolian Autonomous Prefecture 841099, China; 2 Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
Abstract:As an annual herbaceous plant, tomato (Solanum lycopersicum) is rich in nutrients, and with the change in market demand, breeding high-yield and high-quality tomato varieties has become one of the main goals of breeding. The number of seeds, soluble solids, transverse diameter and longitudinal diameter of tomato fruit are of great significance to improve the yield and quality of tomato fruit. This study was conducted using insertion/deletion (InDel) markers to locate QTLs for tomato fruit seed number, soluble solids, transverse diameter and longitudinal diameter, and candidate genes were identified based on RNA-seq. In this study, F2 populations of 60 lines were obtained by crossbreeding 'Tomato microflora', which has low fruit seed number and soluble solids content and small transverse and longitudinal diameters, and 'M82' was used as the female parent, which has high fruit seed number and soluble solids content and large transverse and longitudinal diameters. Correlation and cluster analysis were carried out through the investigation of phenotypic data. Based on tomato genome information, candidate genes related to tomato fruit traits were explored. The results showed that the variation coefficients of F2 tomato material seed number, soluble solid content, longitudinal diameter and transverse diameter were all greater than 10%, and skewness and kurtosis showed that these 4 characteristics were normally distributed. Seed number was positively correlated with soluble solid content, longitudinal diameter and transverse diameter, and soluble solid content was negatively correlated with longitudinal diameter and transverse diameter. Longitudinal and transverse diameters were positively correlated. Twenty-five parental polymorphic InDel markers were detected in 62 tomato samples, and a total of 149 sites were detected. Unweighted pair-group method with arithmetic means (UPGMA) cluster analysis showed that 62 tomato samples could be divided into 4 types when the genetic similarity coefficient was 0.70~0.75. Based on 25 polymorphic InDel markers, a total of 5 QTLs were obtained, 4 candidate genes were mined, and their expression patterns were provided by RNA-seq. Solyc12g027770 was located in both seed number and soluble solid. This study provides reference for genetic analysis, molecular mechanism research and the development of molecular markers of seed number, soluble solids and longitudinal diameter of tomato fruit.
董洁, 王娜, 火顺利, 李宁, 余庆辉. 基于InDel标记挖掘与番茄果实性状相关的候选基因[J]. 农业生物技术学报, 2024, 32(7): 1494-1503.
DONG Jie, WANG Na, HUO Shun-Li, LI Ning, YU Qing-Hui. Identification of Candidate Genes Related to Fruit Traits Using InDel Markers of Tomato (Solanum lycopersicum). 农业生物技术学报, 2024, 32(7): 1494-1503.
[1] 艾海提•克然木, 木合塔尔•扎热, 吴正保. 2023. '灰枣'果实外观品质指标相关性分析[J]. 浙江林业科技, 43(01): 89-93. (Aheti K, Muhetal Z, Wu Z B.2023. Correlation analysis of fruit appearance quality indexes of 'gray Jujube'[J]. Zhejiang Forestry Science and Technology, 43(01): 89-93.) [2] 董淑芳, 王孝宣, 高建昌, 等. 2016. 番茄粉红色果实相关基因的dCAPS和InDel标记开发与应用[J]. 中国蔬菜, 323(01): 24-29. (Dong S F, Wang X X, Gao J C, et al.2016. Development and application of dCAPS and InDel markers in tomato pink fruit related genes[J]. China Vegetables, 323(01): 24-29.) [3] 杜海东, 游茜, 李毅丰, 等. 2020. 番茄遗传图谱与基因定位研究进展[J]. 河北科技师范学院学报, 34(03): 20-25. (Du H D, You Q, Li Y F, et al.2020. Advances in genetic map and gene mapping of tomato[J]. Journal of Hebei Normal University of Science and Technology, 34(03): 20-25.) [4] 胡陶铸, 林丽, 胡继军, 等. 2019. 利用InDel标记构建番茄新品种指纹图谱[J]. 上海交通大学学报(农业科学版), 37(02):24-29. (Hu T Z, Lin L, Hu J J, et al.2019. Construction of fingerprint of new tomato varieties using InDel markers[J]. Journal of Shanghai Jiao Tong University (Agricultural Sciences), 37(02): 24-29.) [5] 黄松, 刘勇鹏, 孙凯乐, 等. 2023. 不同LED光强补光对日光温室越冬番茄生长及产量品质的影响[J]. 山东农业科学, 55(06): 1-13. (Huang S, Liu Y P, Sun K L, et al.2023. Effect of different LED light intensification on growth, yield and quality of overwintering tomato in solar greenhouse[J]. Shandong Agricultural Sciences,55(06) 1-13.) [6] 阚云霞, 师海林, 张丹丹, 等. 2023. 基于农艺性状和InDel标记的矮生番茄种质资源遗传多样性分析[J]. 农业生物技术学报, 31(06): 1122-1132. (Kan Y X, Shi H L, Zhang D D, et al.2023. Genetic diversity analysis of dwarf tomato germplasm resources based on agronomic traits and InDel markers[J]. Chinese Journal of Agricultural Biotechnology, 31(06): 1122-1132.) [7] 李霞, 王青. 2023. 高品质番茄限根水培技术[J]. 中国蔬菜, 7: 114-116. (Li X, Wang Q.2023. Hydroponic technology of high quality tomato with limited root[J]. Chinese Vegetables, 7: 114-116.) [8] 刘丹. 2019. 利用番茄果实泛转录组挖掘抗性及可溶性固形物含量相关基因[D]. 硕士学位论文, 西北农林科技大学, 导师: 黄三文. pp. 16-26. (Liu D.2019. Extraction of genes related to resistance and soluble solids content by means of the pan transcriptome of tomato fruit[D].Thesis for M S, Northwest A & F University, Supervisor: Huang S W. pp. 16-26.) [9] 牛艳, 王晓静, 陈翔, 等. 2022. 中国番茄产业发展的现状问题和对策及宁夏番茄产业发展成效[J]. 黑龙江农业科学, 342(12): 70-74. (Niu Y, Wang X J, Chen X, et al.2022. Current situation, problems and countermeasures of tomato industry development in China and results of tomato industry development in Ningxia[J]. Heilongjiang Agricultural Sciences, 342(12): 70-74.) [10] 潘英杰, 孙焱鑫, 李艳梅, 等. 2022. 基于不同品种和园区的番茄果实可溶性固形物含量对表型性状的响应[J]. 山东农业科学, 54(10): 30-36. (Pan Y J, Sun Y X, Li Y M, et al.2022. Response of soluble solid content of tomato fruits to phenotypic traits based on different varieties and parks[J]. Shandong Agricultural Sciences, 54(10): 30-36.) [11] 芮文婧, 王晓敏, 张倩男, 等. 2018. 番茄叶片DNA提取、SSR-PCR反应体系优化及引物筛选[J]. 分子植物育种, 16(07): 2230-2236. (Rui W J, Wang X M, Zhang Q N, et al.2018. Extraction of DNA from tomato leaves, optimization of SSR-PCR reaction system and screening of primers[J]. Molecular Plant Breeding, 16(07): 2230-2236.) [12] 陶顺玉, 吴贝, 刘念, 等. 2022. 花生InDel标记开发及其在含油量QTL定位中的应用[J]. 作物学报, 49(05): 1222-1230. (Tao S Y, Wu B, Liu N, et al.2022. Development of InDel marker in peanut and its application in QTL mapping of oil content[J]. Acta Agronomica Sinica, 49(05): 1222-1230.) [13] 王仁汉, 李文丽, 王富, 等. 2018. 与番茄果实颜色连锁的InDel标记及其应用[J]. 江苏农业科学, 46(03): 32-34. (Wang R H, Li W L, Wang F, et al.2018. InDel markers linked with tomato fruit color and their application[J]. Jiangsu Agricultural Sciences, 46(03): 32-34.) [14] 王涛. 2016. 番茄遗传多样性及几个重要农艺性状的关联分析[D]. 博士学位论文, 沈阳农业大学, 导师: 李海涛. pp. 56-70. (Wang T.2016. Correlation analysis of genetic diversity and several important agronomic traits of tomato[D]. Thesis for Ph. D., Shenyang Agricultural University, Supervisor: Li H T, pp. 56-70.) [15] 张国儒, 唐亚萍, 杨涛, 等. 2019. 基于重测序番茄InDel标记的开发[J]. 分子植物育种, 17(14): 4692-4697. (Zhang G R, Tang Y P, Yang T, et al.2019. Development of InDel markers in tomato based on resequencing[J]. Molecular Plant Breeding, 17(14): 4692-4697.) [16] 张录霞, 甘中祥, 李倍金, 等. 2016. 利用InDel标记鉴定加工番茄杂交种纯度[J]. 分子植物育种, 14(06): 1533-1537. (Zhang L X, Gan Z X, Li B J, et al.2016. Identification of purity of processed tomato hybrids by InDel markers[J]. Molecular Plant Breeding, 14(06): 1533-1537.) [17] 张振华, 郭梁, 朱玉, 等. 2011. 籼稻不同定位群体抽穗期和株高的QTL比较研究[J]. 中国农业科学, 44(15): 3069-3077. (Zhang Z H, Guo L, Zhu Y, et al.2011. Comparative study on QTL of heading date and plant height of indica rice in different localization populations[J]. Scientia Agricultura Sinica, 44(15): 3069-3077.) [18] 赵凌侠, 李景富. 1990. 番茄起源、传播及分类的回顾[J]. 作物品种资源, 3: 29-31. (Zhoa L X, Li J F.1999. Review on origin, dissemination and classification of tomato[J]. Crop Variety Resources, 3: 29-31.) [19] 周明, 李常保. 2022. 我国番茄种业发展现状及展望[J]. 蔬菜, 377(05): 6-10. (Zhou M, L C.2022. Current situation and prospect of tomato seed industry in China[J]. Vegetables, 377(05): 6-10.) [20] Ayenan M A T, Danquah A, Agre P A, et al.2021 Genomic and phenotypic diversity of cultivated and wild tomatoes with varying levels of heat tolerance[J]. Genes, 12(4): 503. [21] Chen S F, Zhou Y Q, Chen Y R, et al.2018. fastp: An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics (Oxford, England), 34(17): i884-i890. [22] Guo J, Gao J, Liu Z.2022. HISAT2 parallelization method based on spark cluster[C]//Journal of Physics: Conference Series. IOP Publishing, 2179(1): 012038. [23] Liu W W, Zhang Y, He H, et al.2022. From hybrid genomes to heterotic trait output: Challenges and opportunities[J]. Current Opinion in Plant Biology, 66: 102193. [24] Pei Y A, Xue Q H, Zhang Z H, et al.2023. β-1, 3-GLUCANASE10 regulates tomato development and disease resistance by modulating callose deposition[J]. Plant Physiology, 192(4): 2785-2802.