Meta-analysis of QTL and Mining of Candidate Genes for Quality Traits in Wheat (Triticum aestivum)
LI Na1, WANG Peng1, KONG Bin-Xue1, MA Jing-Fu1, DOU Jia-Xin1, CHEN Tao1, ZHANG Pei-Pei2, LIU Yuan1, YANG De-Long1,2,*
1 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; 2 State Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
Abstract:Wheat (Triticum aestivum) quality trait is a complex quantitative trait controlled by multiple genes. It is of great significance to explore the important genomic regions and candidate genes of wheat quality for molecular genetic improvement. In this study, the mapping integration and meta-analysis were conducted of 293 initial QTLs for quality traits from 31 QTL mapping studies in wheat, and 40 meta quantitative trait loci (MQTLs) were predicted which included 35 MQTLs for grain hardness (GH), 23 MQTLs for sedimentation value (SV) and 16 MQTLs for starch content (SC). The average confidence interval of these MQTLs was 3.87 cM, which was 3.82 times smaller than the average confidence interval of the initial QTL (14.80 cM), The average confidence interval of the 5 core MQTLs was reduced to 0.80 cM. A total of 839 candidate genes were obtained from the 40 MQTLs intervals by homology alignment and Ensembl Plants sequence information. Based on transcriptome date, 113 candidate genes with high expression in grain endosperm and aleurone layer were screened. The important genomic regions and candidate genes obtained in this study will provide a theoretical basis for the molecular genetic improvement of quality traits in wheat.
李娜, 王鹏, 孔斌雪, 马靖福, 窦佳欣, 陈涛, 张沛沛, 刘媛, 杨德龙. 小麦品质性状QTL元分析及候选基因挖掘[J]. 农业生物技术学报, 2024, 32(1): 11-25.
LI Na, WANG Peng, KONG Bin-Xue, MA Jing-Fu, DOU Jia-Xin, CHEN Tao, ZHANG Pei-Pei, LIU Yuan, YANG De-Long. Meta-analysis of QTL and Mining of Candidate Genes for Quality Traits in Wheat (Triticum aestivum). 农业生物技术学报, 2024, 32(1): 11-25.
[1] 郭利建, 王竹林, 汪世娟, 等. 2016. 基于SRAP和SSR标记的小麦品质相关性状的QTL定位[J]. 麦类作物学报, 36(10): 1275-1282. (Guo L J, Wang Z L, Wang S J, et al.2016. QTL mapping of wheat grain quality traits based on SRAP and SSR marker[J]. Journal of Triticeae Crops, 36(10): 1275-1282.) [2] 何坤. 2012. 小麦麦谷蛋白亚基基因克隆及其功能研究[D]. 硕士学位论文, 河北师范大学, 导师: 朱正歌, 李辉. pp. 21-27. (He K.2012. Cloning and functional analysis of glutenin in Triticum aestivum[D]. Thesis for M.S., Hebei Normal University, Supervisor: Zhu Z G, Li H, pp. 21-27.) [3] 何中虎, 晏月明, 庄巧生, 等. 2006. 中国小麦品种品质评价体系建立与分子改良技术研究[J]. 中国农业科学, 39(6): 1091-1101. (He Z H, Yan Y M, Zhang Q S, et al.2006. Establishment of quality evaluation system and utilization of molecular methods for the improvement of chinese wheat quality[J]. Scientia Agricultura Sinica, 39(6): 1091-1101. [4] 黄梦豪, 刘天相, 强琴琴, 等. 2019. 基于SNP和SSR标记的小麦品质性状的QTL定位[J]. 分子植物育种, 17(12): 3966-3973. (Huang M H, Liu T X, Qiang Q Q, et al.2019. QTL mapping of wheat quality traits based on SNP and SSR marker[J]. Molecular Plant Breeding, 17(12): 3966-3973.) [5] 蒋智文, 刘新光, 周中军. 2009. 组蛋白修饰调节机制的研究进展[J]. 生物化学与生物物理进展, 36(10): 1252-1259. (Jiang Z W, Liu X G, Zhou Z J.2009. Research progress of histone modification regulation mechanism[J]. Progress in Biochemistry and Biophysics, 36(10): 1252-1259. [6] 刘锐, 魏益民, 邢亚楠, 等. 2013. 小麦淀粉与面条质量关系的研究进展[J]. 麦类作物学报, 33(5): 1058-1063. (Liu R, Wei Y M, Xing Y N, et al.2013. Review on the relationship between starch and noodle quality in wheat[J]. Journal of Triticeae Crops, 33(5): 1058-1063. [7] 彭严春. 2016. 长江流域小麦地方品种低分子量麦谷蛋白亚基组成及高分子量谷蛋白亚基基因1Dy12.7的克隆[D]. 博士学位论文, 华中农业大学, 导师: 孙东发. pp. 48-63. (Peng Y C.2016. Allelic variation of LMW-GS composition and cloning of HMW-GS 1Dy12.7 gene in wheat landraces of the Yangtze-River region[D]. Thesis for Ph.D., Huazhong Agricultural University, Supervisor: Sun D F, pp. 48-63.) [8] 沈玮囡, 王竹林, 杨睿, 等. 2014. 波兰小麦品系XN555×普通小麦品系中13衍生重组自交系(RILs)群体中籽粒品质相关性状QTL定位[J]. 农业生物技术学报, 22(5): 561-571. (Shen W N, Wang Z L, Yang R, et al.2014. QTL analysis of grain quality related traits using recombinant inbred lines (RILs) derived from the cross of Triticum polonicum L. Line XN555×T. aestivum L. Line zhong 13[J]. Journal of Agricultural Biotechnology, 22(5): 561-571. [9] 石培春, 王光利, 王小国, 等. 2012. 小麦籽粒淀粉主要特性的QTL定位[J]. 核农学报, 26(2): 210-216. (Shi P C, Wang G L, Wang X G, et al.2021. QTL mapping of the major properties of starch in common whent[J]. Journal of Nuclear Agricultural Sciences, 26(2): 210-216. [10] 孙海艳, 吕建华, 范玉顶, 等. 2008. 小麦蛋白质和淀粉品质性状的QTL分析[J]. 自然科学进展, 18(5): 505-513. (Sun H Y, Lv J H, Fan Y D, et al.2008. Quantitative trait locis (QTLs) for quality traits related to protein and starch in wheat[J]. Progress in Natural Science, 18(5): 505-513. ) [11] 万富世, 王光瑞, 李宗智. 1989. 我国小麦品质现状及其改良目标初探[J]. 中国农业科学, 22(3): 14-21. (Wan F S, Wang G R, Li Z Z.1989. Study on current situation and improvement target of Chinese wheat quality[J]. Scientia Agricultura Sinica, 22(3): 14-21. ) [12] 吴云鹏, 张业伦, 肖永贵, 等. 2008. 小麦重要品质性状的QTL定位[J]. 中国农业科学, 41(2): 331-339. (Wu Y P, Zhang Y L, Xiao Y G, et al.2008. QTL mapping for important quality traits in common wheat[J]. Scientia Agricultura Sinica, 41(2): 331-339. ) [13] 徐荣敏, 王晓曦. 2005. 小麦淀粉的理化特性及其与面制品品质的关系[J]. 粮食与饲料工业, (10): 23-24. (Xu R M, Wang X X. 2005. Physicochemical properties of wheat starch and its relationship with the quality of flour products [J]. Cereal & Feed Industry, (10): 23-24.) [14] 徐卫红. 2004. ATP 合成酶及其功能机制综述[J]. 上饶师范学院学报, 24(3): 36-40. (Xu W H, 2004. A review of ATP synthase and its functional mechanisms[J]. Journal of Shangrao Normal University, 24(3): 36-40. [15] 杨林, 吴青霞, 邵慧, 等. 2013. 小麦籽粒品质性状的QTL分析[J]. 西北植物学报, 33(8): 1574-1583. (Yang L, Wu Q X, Shao H, et al.2013. QTL mapping for grain quality traits in wheat[J]. Acta Botanica Boreali-Occidentalia Sinica, 33(8): 1574-1583. [16] Appels R, Eversole K, Feuillet C, et al.2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome[J]. Science, 361(6403): eaar7191. [17] Bilgrami S S, Ramandi H D, Shariati V, et al.2020. Detection of genomic regions associated with tiller number in Iranian bread wheat under different water regimes using genome-wide association study[J]. Scientific Reports, 10(1): 1-17. [18] Borrill P, Ramirez-Gonzalez R,Uauy C.2016. expVIP: A customizable RNA-seq data analysis and visualization platform[J]. Plant Physiology, 170(4): 2172-2186. [19] Carter A H, Garland-Campbell K, Morris C F, et al.2012. Chromosomes 3B and 4D are associated with several milling and baking quality traits in a soft white spring wheat (Triticum aestivum L.) population[J]. Theoretical and Applied Genetics, 124(6): 1079-1096. [20] Chen J H, Zhang F Y, Zhao C J, et al.2019. Genome-wide association study of six quality traits reveals the association of the TaRPP13L1 gene with flour colour in Chinese bread wheat[J]. Plant Biotechnology Journal, 17(11): 2106-2122. [21] Cui F, Fan X L, Chen M, et al.2016. QTL detection for wheat kernel size and quality and the responses of these traits to low nitrogen stress[J]. Theoretical and Applied Genetics, 129(3): 469-484. [22] Cui X K, Jin P, Cui X, et al.2013. Control of transposon activity by a histone H3K4 demethylase in rice[J]. Proceedings of the National Academy of Sciences of the USA, 110(5): 1953-1958. [23] Dao H Q, Byrne P F, Reid S D, et al.2017. Validation of quantitative trait loci for grain quality-related traits in a winter wheat mapping population[J]. Euphytica, 213(1): 1-13. [24] Darvasi A, Soller M.1997. A simple method to calculate resolving power and confidence interval of QTL map location[J]. Behavior Genetics, 27(2): 125-132. [25] Deng Z, Fang W, Guo X, et al.2018. Genetic dissection of interactions between wheat flour starch and its components in two populations using two QTL mapping methods[J]. Molecular Breeding, 38(4): 1-16. [26] Deng Z, Tian J, Chen F, et al.2015. Genetic dissection on wheat flour quality traits in two related populations[J]. Euphytica, 203(1): 221-235. [27] Deng Z Y, Zhao L, Liu B, et al.2013. Conditional QTL mapping of sedimentation volume on seven quality traits in common wheat[J]. Journal of Integrative Agriculture, 12(12): 2125-2133. [28] El-feki W M, Byrne P F, Reid S D, et al.2013. Quantitative trait locus mapping for end-use quality traits in hard winter wheat under contrasting soil moisture levels[J]. Crop Science, 53(5): 1953-1967. [29] Feng N, He Z H, Zhang Y, et al.2013. QTL mapping of starch granule size in common wheat using recombinant inbred lines derived from a PH82-2/Neixiang 188 cross[J]. The Crop Journal, 1(2): 166-171. [30] Goel S, Singh K, Singh B, et al.2019. Analysis of genetic control and QTL mapping of essential wheat grain quality traits in a recombinant inbred population[J]. PLOS ONE, 14(3): e0200669. [31] Goffinet B,Gerber S.2000. Quantitative trait loci: A meta-analysis[J]. Genetics, 155(1): 463-473. [32] Groos C, Bervas E,Charmet G.2004. Genetic analysis of grain protein content, grain hardness and dough rheology in a hard×hard bread wheat progeny[J]. Journal of Cereal Science, 40(2): 93-100. [33] Gudi S, Saini D K, Singh G, et al.2022. Unravelling consensus genomic regions associated with quality traits in wheat using meta-analysis of quantitative trait loci[J]. Planta, 255(6): 1-19. [34] Guo B, Sleper D A, Lu P, et al.2006. QTLs associated with resistance to soybean cyst nematode in soybean: Meta-analysis of QTL locations[J]. Crop Science, 46(2): 595-602. [35] Guo Y, Zhang G Z, Guo B J, et al.2020. QTL mapping for quality traits using a high-density genetic map of wheat[J]. PLOS One, 15(3): e0230601. [36] Heo H,Sherman J.2013. Identification of QTL for grain protein content and grain hardness from winter wheat for genetic improvement of spring wheat[J]. Plant Breeding and Biotechnology, 1(4): 347-353. [37] Huang X Q, Cloutier S, Lycar L, et al.2006. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two canadian wheats (Triticum aestivum L.)[J]. Theoretical And Applied Genetics, 113(4): 753-766. [38] Khahani B, Tavakol E, Shariati V, et al.2020. Genome wide screening and comparative genome analysis for Meta-QTLs, ortho-MQTLs and candidate genes controlling yield and yield-related traits in rice[J]. BMC Genomics, 21(1): 1-24. [39] Kim H B, Cho J I, Ryoo N, et al.2016. Role of rice cytosolic hexokinase OsHXK7 in sugar signaling and metabolism[J]. Journal of Integrative Plant Biology, 58(2): 127-135. [40] Kumar A, Mantovani E E, Simsek S, et al.2019. Genome wide genetic dissection of wheat quality and yield related traits and their relationship with grain shape and size traits in an elite×non-adapted bread wheat cross[J]. PLOS One, 14(9): e0221826. [41] Kumar A, Saripalli G, Jan I, et al.2020. Meta-QTL analysis and identification of candidate genes for drought tolerance in bread wheat (Triticum aestivum L.)[J]. Physiology and Molecular Biology of Plants, 26(8): 1713-1725. [42] Kumar S, Singh V P, Saini D K, et al.2021. Meta-QTLs, ortho-MQTLs, and candidate genes for thermotolerance in wheat (Triticum aestivum L.)[J]. Molecular Breeding, 41(11): 1-22. [43] Li D Q, Wu X B, Wang H F, et al.2021. Defective mitochondrial function by mutation in THICK ALEURONE 1 encoding a mitochondrion-targeted single-stranded DNA-binding protein leads to increased aleurone cell layers and improved nutrition in rice[J]. Molecular Plant, 14(8): 1343-1361. [44] Li Y, Song Y, Zhou R, et al.2009. Detection of QTLs for bread-making quality in wheat using a recombinant inbred line population[J]. Plant Breeding, 128(3): 235-243. [45] Liu T T, Liu K, Wang F F, et al.2017. Conditional and unconditional QTLs mapping of gluten strength in common wheat (Triticum aestivum L.)[J]. Journal of Integrative Agriculture, 16(10): 2145-2155. [46] Ma D, Zhang Y, Xia X, et al.2009. Milling and Chinese raw white noodle qualities of common wheat near-isogenic lines differing in puroindoline b alleles[J]. Journal of Cereal Science, 50(1): 126-130. [47] Ma J, Zhang C Y, Yan G J, et al.2012. Identification of QTLs conferring agronomic and quality traits in hexaploid wheat[J]. Journal of Integrative Agriculture, 11(9): 1399-1408. [48] Matsushima R, Maekawa M, Kusano M, et al.2016. Amyloplast membrane protein SUBSTANDARD STARCH GRAIN6 controls starch grain size in rice endosperm[J]. Plant Physiology, 170(3): 1445-1459. [49] Mccartney C A, Somers D J, Lukow O, et al.2006. QTL analysis of quality traits in the spring wheat cross RL4452×'AC Domain'[J]. Plant Breeding, 125(6): 565-575. [50] Miao Y, Jing F, Ma J, et al.2022. Major genomic regions for wheat grain weight as revealed by QTL linkage mapping and meta-analysis[J]. Frontiers in Plant Science, 13: 802310. [51] Nakamura T, Vrinten P, Saito M, et al.2002. Rapid classification of partial waxy wheats using PCR-based markers[J]. Genome, 45(6): 1150-1156. [52] Narasimhamoorthy B, Gill B S, Fritz A K, et al.2006. Advanced backcross QTL analysis of a hard winter wheat× synthetic wheat population[J]. Theoretical and Applied Genetics, 112(5): 787-796. [53] Niu B, Deng H, Li T, et al.2020. OsbZIP76 interacts with OsNF‐YBs and regulates endosperm cellularization in rice (Oryza sativa)[J]. Journal of Integrative Plant Biology, 62(12): 1983-1996. [54] Patil R M, Oak M D, Tamhankar S A, et al.2009. Molecular mapping of QTLs for gluten strength as measured by sedimentation volume and mixograph in durum wheat (Triticum turgidum L. ssp durum)[J]. Journal of Cereal Science, 49(3): 378-386. [55] Quraishi U M, Pont C, Ain Q U, et al.2017. Combined genomic and genetic data integration of major agronomical traits in bread wheat (Triticum aestivum L.)[J]. Frontiers in Plant Science, 14(8): 1843. [56] Ragupathy R, Naeem H A, Reimer E, et al.2008. Evolutionary origin of the segmental duplication encompassing the wheat GLU-B1 locus encoding the overexpressed Bx7 (Bx7 OE) high molecular weight glutenin subunit[J]. Theoretical and Applied Genetics, 116(2): 283-296. [57] Ramírez-González R, Borrill P, Lang D, et al.2018. The transcriptional landscape of polyploid wheat[J]. Science, 361(6403): eaar6089. [58] Ren Y, Wang Y, Liu F, et al.2014. GLUTELIN PRECURSOR ACCUMULATION3 encodes a regulator of post-Golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm[J]. The Plant Cell, 26(1): 410-425. [59] Ren Y, Wang Y, Pan T, et al.2020. GPA5 encodes a Rab5a effector required for post-Golgi trafficking of rice storage proteins[J]. The Plant Cell, 32(3): 758-777. [60] Ren Z, Bai F, Xu J, et al.2021. A chloride efflux transporter, BIG RICE GRAIN 1, is involved in mediating grain size and salt tolerance in rice[J]. Journal of integrative plant biology, 63(12): 2150-2163. [61] Saini D K, Srivastava P, Pal N, et al.2022. Meta-QTLs, ortho-meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.)[J]. Theoretical and Applied Genetics, 135(3): 1049-1081. [62] Soriano J M, Colasuonno P, Marcotuli I, et al.2021. Meta-QTL analysis and identification of candidate genes for quality, abiotic and biotic stress in durum wheat[J]. Scientific Reports, 11(1): 1-15. [63] Sosnowski O, Charcosset A,Joets J.2012. BioMercator V3: An upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms[J]. Bioinformatics, 28(15): 2082-2083. [64] Venske E, Dos Santos R S, Farias D d R, et al.2019. Meta-analysis of the QTLome of Fusarium head blight resistance in bread wheat: Refining the current puzzle[J]. Frontiers in Plant Science, 10: 727. [65] Veyrieras J B, Goffinet B,Charcosset A.2007. MetaQTL: A package of new computational methods for the meta-analysis of QTL mapping experiments[J]. BMC Bioinformatics, 8(1): 1-16. [66] Visscher P M,Goddard M E.2004. Prediction of the confidence interval of quantitative trait loci location[J]. Behavior Genetics, 34(4): 477-482. [67] Wang L, Li G, Peña R J, et al.2010. Development of STS markers and establishment of multiplex PCR for Glu-A3 alleles in common wheat (Triticum aestivum L.)[J]. Journal of Cereal Science, 51(3): 305-312. [68] Wang Q, Lin Q, Wu T, et al.2020. OsDOG1L-3 regulates seed dormancy through the abscisic acid pathway in rice[J]. Plant Science, 298: 110570. [69] Wang S, Liu W, He Y, et al.2021. bZIP72 promotes submerged rice seed germination and coleoptile elongation by activating ADH1[J]. Plant Physiology and Biochemistry, 169: 112-118. [70] Xu D, Qu S, Tucker M R, et al.2019. Ostkpr1 functions in anther cuticle development and pollen wall formation in rice[J]. BMC Plant Biology, 19(1): 1-13. [71] Xu X, E Z, Zhang D, et al.2021. OsYUC11-mediated auxin biosynthesis is essential for endosperm development of rice[J]. Plant Physiology, 185(3): 934-950. [72] Yang D L, Jing R L, Chang X P, et al.2007. Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems[J]. Genetics, 176(1): 571-584. [73] Yang X, Gong P, Li K, et al.2016a. A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice[J]. Journal of Experimental Botany, 67(9): 2761-2776. [74] Yang Y, Amo A, Wei D, et al.2021. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat[J]. Theoretical and Applied Genetics, 134(9): 3083-3109. [75] Yang Y, Chai Y, Zhang X, et al.2020. Multi-locus GWAS of quality traits in bread wheat: Mining more candidate genes and possible regulatory network[J]. Frontiers in Plant Science, 11: 1091. [76] Yang Y, Xu J, Huang L, et al.2016b. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice[J]. Journal of Experimental Botany, 67(5): 1297-1310. [77] Ying J Z, Ma M, Bai C, et al.2018. TGW3, a major QTL that negatively modulates grain length and weight in rice[J]. Molecular Plant, 11(5): 750-753. [78] Yu L X, Barbier H, Rouse M N, et al.2014. A consensus map for Ug99 stem rust resistance loci in wheat[J]. Theoretical and Applied Genetics, 127(7): 1561-1581. [79] Zhang C, Yang Y, Chen S, et al.2021a. A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency[J]. Journal of Integrative Plant Biology, 63(5): 889-901. [80] Zhang G, Chen R Y, Shao M, et al.2021b. Genetic analysis of end-use quality traits in wheat[J]. Crop Science, 61(3): 1709-1723. [81] Zhang L B, Zhu Q, Wu Z Q, et al.2009a. Selection on grain shattering genes and rates of rice domestication[J]. New Phytologist, 184(3): 708-720. [82] Zhang W, Chao S M, Manthey F, et al.2008. QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat[J]. Theoretical and Applied Genetics, 117(8): 1361-1377. [83] Zhang X Q, Hou P, Zhu H T, et al.2013. Knockout of the VPS22 component of the ESCRT-II complex in rice (Oryza sativa L.) causes chalky endosperm and early seedling lethality[J]. Molecular Biology Reports, 40(5): 3475-3481. [84] Zhang Y L, Wu Y P, Xiao Y G, et al.2009b. QTL mapping for milling, gluten quality, and flour pasting properties in a recombinant inbred line population derived from a Chinese soft×hard wheat cross[J]. Crop and Pasture Science, 60(6): 587-597. [85] Zhao Z, Wang C, Yu X, et al.2022. Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice[J]. Proceedings of the National Academy of Sciences of the USA, 119(36): e2121671119. [86] Zhou Y, Lu D, Li C, et al.2012. Genetic control of seed shattering in rice by the APETALA2 transcription factor SHATTERING ABORTION1[J]. The Plant Cell, 24(3): 1034-1048.