Research Progress on Leuconostoc citreum and Its Functional Substances in the Fields of Agriculture and Food Processing
WU Xiao-Meng1,2,*, GU Yang2, ZHANG Xi2
1 CAU-SCCD Advanced Agricultural & Industrial Institute, Chengdu 611430, China; 2 College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
Abstract:Leuconostoc citreum is a type of heterofermentative lactic acid bacteria that have garnered attention due to their ability to produce a variety of functional substances. The bacteria themselves also possess excellent fermentation and flocculation capabilities. This paper reviewed the current research progress of L. citreum, both domestically and internationally. The key functional substances synthesized, including exopolysaccharides, enzymes, mannitol, and bacteriocins, as well as the applications of the bacteria themselves as the starter culture, microbial flocculant, and probiotic in the fields of food processing and agricultural production were summarized. This study systematically analyzed the current challenges and developmental bottlenecks hindering the industrial application of L. citreum and explores prospective research directions, aiming to provide a theoretical basis for its further development and industrial utilization.
吴晓蒙, 顾杨, 张熙. 柠檬明串珠菌及其功能物质在农业与食品加工领域的研究进展[J]. 农业生物技术学报, 2025, 33(11): 2496-2505.
WU Xiao-Meng, GU Yang, ZHANG Xi. Research Progress on Leuconostoc citreum and Its Functional Substances in the Fields of Agriculture and Food Processing. 农业生物技术学报, 2025, 33(11): 2496-2505.
[1] 黎志德, 刘桂云, 常国炜, 等. 2023. 葡聚糖蔗糖酶及其家族在结构与功能上的研究进展[J]. 现代食品科技, 39(12): 336-344. (Li Z D, Liu G Y, Chang G W, et al.2023. Research advances in structural and functional Ppoperties of glucansucrases and their families[J]. Modern Food Science & Technology, 39(12): 336-344.) [2] 田露, 吴咪, 缑敬轩, 等. 2021. 细菌素的研究与应用进展[J].生物技术通报, 37(04): 224-233. (Tian L, Wu M, Gou J X, et al.2021. Research and application progress of bacteriocin[J]. Biotechnology Bulletin, 37(04): 224-233.) [3] 魏倩倩. 2010. 甘露醇的生产与应用研究进展[J]. 食品工业科技, 31(12): 401-404. (Wei Q Q.2010. Research progress in preparation and application of mannitol[J]. Science and Technology of Food Industry, 31(12): 401-404.) [4] 周日尤, 伍玉碧. 1999. 甘露醇制取的提取法与合成法比较[J]. 广西轻工业, (4): 5-9. (Zhou R Y, Wu Y B. 1999. A comparison between the extraction and synthesis of mannitol preparation[J]. Light Industry Science and Technology, (4): 5-9.) [5] Abid Y, Azabou S, Blecker C, et al.2021. Rheological and emulsifying properties of an exopolysaccharide produced by potential probiotic Leuconostoc citreum-BMS strain[J]. Carbohydrate Polymers, 256: 117523. [6] Ahn H, Lee D, Lee S, et al.2023a. Isolation and characterisation of the bacteriocin-producing Leuconostoc citreum HW02 from malts[J]. International Journal of Food Science & Technology, 58(1): 83-93. [7] Ahn H, Lee G, Lee W, et al.2023b. Evaluation of probiotic and anti-inflammatory properties of bacteriocinogenic Pediococcus acidilactici HW01 and Leuconostoc citreum HW02 from malted barley[J]. Chemical and Biological Technologies in Agriculture, 10(1): 49. [8] Angelin J, Kavitha M.2020. Exopolysaccharides from probiotic bacteria and their health potential[J]. International Journal of Biological Macromolecules, 162: 853-865. [9] Sahin A W, Rice T, Zannini E, et al.2019. Leuconostoc citreum TR116: In-situ production of mannitol in sourdough and its application to reduce sugar in burger buns[J]. International Journal of Food Microbiology, 302: 80-89. [10] Chen Z, Ni D, Zhang W, et al.2021, Lactic acid bacteria-derived α-glucans: From enzymatic synthesis to miscellaneous applications[J]. Biotechnology Advances, 47: 107708. [11] Dai Y, Ge Z, Wang Z, et al.2024. Effects of water-soluble and water-insoluble α-glucans produced in situ by Leuconostoc citreum SH12 on physicochemical properties of fermented soymilk and their structural analysis[J]. International Journal of Biological Macromolecules, 267: 131306. [12] Dal Bello F, Walter J, Hertel C, et al.2001. In vitro study of prebiotic properties of levan-type exopolysaccharides from lactobacilli and non-digestible carbohydrates using denaturing gradient gel electrophoresis[J]. Systematic and Applied Microbiology, 24(2): 232-237. [13] De Bellis P, Rizzello C G, Sisto A, et al.2019. Use of a selected Leuconostoc citreum strain as a starter for making a “yeast-free” bread[J]. Foods, 8(2): 70. [14] Donia M S, Fischbach M A.2015. Small molecules from the human microbiota[J]. Science, 349(6246): 1254766. [15] Eom H J, Seo D M, Han N S.2007. Selection of psychrotrophic Leuconostoc spp. producing highly active dextransucrase from lactate fermented vegetables[J]. International Journal of Food Microbiology, 117(1): 61-67. [16] Feng F, Zhou Q, Yang Y, et al.2018. Characterization of highly branched dextran produced by Leuconostoc citreum B-2 from pineapple fermented product[J]. International Journal of Biological Macromolecules, 113: 45-50. [17] Han Y W.1990. Microbial levan[J]. Advances in Applied Microbiology, 35: 171-194. [18] Hemme D, Foucaud-Scheunemann C.2004. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods[J]. International Dairy Journal, 14(6): 467-94. [19] Hoehnel A, Bez J, Sahin A W, et al.2020. Leuconostoc citreum TR116 as a microbial cell factory to functionalise high-protein faba bean ingredients for bakery applications[J]. Foods, 9(11): 1706. [20] Hotel A C P, Cordoba A.2001. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria[J]. Prevention, 5(1): 1-10. [21] Jung J Y, Lee S H, Jeon C O.2014. Kimchi microflora: History, current status, and perspectives for industrial kimchi production[J]. Applied Microbiology and Biotechnology, 98: 2385-2393. [22] Kang H, Moon J S, Lee M G, et al.2016. Immunomodulatory effects of Leuconostoc citreum EFEL2061 isolated from kimchi, a traditional Korean food, on the Th2 type-dominant immune response in vitro and in vivo[J]. Journal of Functional Foods, 20: 79-87. [23] Kang Y J, Kim M J, Kim T J, et al.2023. Characterization of two mannitol-producing Leuconostoc strains from Pa-Kimchi and their application for juice and yogurt fermentation[J]. Journal of Microbiology and Biotechnology, 33(6): 780. [24] Kaur B, Garg N, Sachdev A, et al.2012. Isolation and molecular characterization of anti-Helicobacter pylori bacteriocin producing Pediococcus acidilactici BA28[J]. Open Access Scientific Reports, 1(6): 323. [25] Kim K H, Chung C B, Kim Y H, et al.2005. Cosmeceutical properties of levan produced by Zymomonas mobilis[J]. Journal of Cosmetic Science, 56(6): 395-406. [26] Kim M J, Lee H W, Lee M E, et al.2019. Mixed starter of Lactococcus lactis and Leuconostoc citreum for extending kimchi shelf-life[J]. Journal of Microbiology, 57(6): 479-484. [27] Kitazaki K, Baba T, Koga Y, et al.2010. The use of nisin A in preventing bovine mastitis infection[J]. Foods and Food Ingredient of Japan, 215: 449-456. [28] Leroy F, De Vuyst L.2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry[J]. Trends in Food Science & Technology, 15(2): 67-78. [29] Li X, Han Y, Wu X, et al.2023. Effects of inoculation with a binary mixture of Lactobacillus plantarum and Leuconostoc citreum on cell wall components of Chinese Dongbei suancai[J]. Food Research International, 173: 113458. [30] Li Y, Xiao L, Tian J, et al.2022. Structural characterization, rheological properties and protection of oxidative damage of an exopolysaccharide from Leuconostoc citreum 1.2461 fermented in soybean whey[J]. Foods, 11(15): 2283. [31] Liu J, Piao H, Liu C, et al.2022. Characterization of key enzymes for D-lactic acid synthesis in Leuconostoc citreum KM20[J]. Biotechnology and Bioprocess Engineering, 27(6): 921-929. [32] López-Cuellar M R, Rodríguez-Hernández A I, Chavarría-Hernández N.2016. LAB bacteriocin applications in the last decade[J]. Biotechnology & Biotechnological Equipment, 30(6): 1039-1050. [33] Lu H, Huang C, Yu K, et al.2022. Effects of mixed inoculation of Leuconostoc citreum and Lactobacillus plantarum on suansun (Sour bamboo shoot) fermentation[J]. Food Bioscience, 47: 101688. [34] Lynch K M, Zannini E, Coffey A, et al.2018. Lactic acid bacteria exopolysaccharides in foods and beverages: Isolation, properties, characterization, and health benefits[J]. Annual Review of Food Science and Technology, 9(1): 155-176. [35] Miao M, Jia X, Hamaker B R, et al.2016. Structure-prebiotic properties relationship for α-D-glucan from Leuconostoc citreum SK24. 002[J]. Food Hydrocolloids, 57: 246-252. [36] Müller D C, Mischler S, Schönlechner R, et al.2021. Multiple techno-functional characteristics of Leuconostoc and their potential in sourdough fermentations[J]. Microorganisms, 9(8): 1633. [37] Muthusamy K, Han H S, Soundharrajan I, et al.2023. A novel strain of probiotic Leuconostoc citreum inhibits infection-causing bacterial pathogens[J]. Microorganisms, 11(2): 469. [38] Nabot M, Guérin M, Sivakumar D, et al.2022. Variability of bacterial homopolysaccharide production and properties during food processing[J]. Biology, 11(2): 171. [39] Otgonbayar G E, Eom H J, Kim B S, et al.2011. Mannitol production by Leuconostoc citreum KACC 91348P isolated from kimchi[J]. Journal of Microbiology and Biotechnology, 21(9): 968-971. [40] Pajarillo E A B, Chae J P, Balolong M P, et al.2015. Effects of probiotic Enterococcus faecium NCIMB 11181 administration on swine fecal microbiota diversity and composition using barcoded pyrosequencing[J]. Animal Feed Science and Technology, 201: 80-88. [41] Peterson R E, Klopfenstein T J, Erickson G E, et al.2007. Effect of Lactobacillus acidophilus strain NP51 on Escherichia coli O157: H7 fecal shedding and finishing performance in beef feedlot cattle[J]. Journal of Food Protection, 70(2): 287-291. [42] Poli A, Kazak H, Gürleyendağ B, et al.2009. High level synthesis of levan by a novel Halomonas species growing on defined media[J]. Carbohydrate Polymers, 78(4): 651-657. [43] Pujato S A, del L Quiberoni A, Candioti M C, et al.2014. Leuconostoc citreum MB1 as biocontrol agent of Listeria monocytogenes in milk[J]. Journal of Dairy Research, 81(2): 137-145. [44] Rashid N S, Mosleh M F.2023. Response of pea plants to spraying with boron and sugar alcohol (mannitol) and their effect on chemical traits of the crop[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 1213(1): 012093. [45] Rice T, Sahin A W, Lynch K M, et al.2020. Isolation, characterisation and exploitation of lactic acid bacteria capable of efficient conversion of sugars to mannitol[J]. International Journal of Food Microbiology, 321: 108546. [46] Riseh R S, Fathi F, Vatankhah M, et al.2024. Exploring the role of levan in plant immunity to pathogens: A review[J]. International Journal of Biological Macromolecules, 279(3): 135419. [47] Saha BC, Racine FM.2011. Biotechnological production of mannitol and its applications[J]. Applied Microbiology and Biotechnology, 89: 879-891. [48] Salehizadeh H, Shojaosadati S A.2001. Extracellular biopolymeric flocculants: Recent trends and biotechnological importance[J]. Biotechnology Advances, 19(5): 371-385. [49] Santini C, Baffoni L, Gaggia F, et al.2010. Characterization of probiotic strains: An application as feed additives in poultry against Campylobacter jejuni[J]. International Journal of Food Microbiology, 141: S98-S108. [50] Sarbini S R, Kolida S, Naeye T, et al.2013. The prebiotic effect of α-1, 2 branched, low molecular weight dextran in the batch and continuous faecal fermentation system[J]. Journal of Functional Foods, 5(4): 1938-1946. [51] Sharma A, Sharma N, Gupta D, et al.2022. Comparative genome analysis of four Leuconostoc strains with a focus on carbohydrate-active enzymes and oligosaccharide utilization pathways[J]. Computational and Structural Biotechnology Journal, 20: 4771-4785. [52] Sharma P, Rashid M, Kaur S.2020. Novel enterocin E20c purified from Enterococcus hirae 20c synergised with ß-lactams and ciprofloxacin against Salmonella enterica[J]. Microbial Cell Factories, 19: 1-11. [53] Shim Y H, Ingale S L, Kim J S, et al.2012. A multi-microbe probiotic formulation processed at low and high drying temperatures: Effects on growth performance, nutrient retention and caecal microbiology of broilers[J]. British Poultry Science, 53(4): 482-490. [54] Silva M S, Ramos C L, González-Avila M, et al.2017. Probiotic properties of Weissella cibaria and Leuconostoc citreum isolated from tejuino-A typical Mexican beverage[J]. LWT, 86: 227-232. [55] Smith D, Lee K D, Gray E, et al.2008. Use of bacteriocins for promoting plant growth and disease resistance. United States, 12/093,779[P] [56] Song L, Miao M, Jiang B, et al.2016. Leuconostoc citreum SK24. 002 glucansucrase: Biochemical characterisation and de novo synthesis of α-glucan[J]. International Journal of Biological Macromolecules, 91: 123-131. [57] Wang X, Osei P O, Rao L, et al.2023. Characteristics and mechanism of Leuconostoc citreum as a novel bioflocculant for starch granules in starch production[J]. Food Innovation and Advances, 2(4): 291-301. [58] Wang X, Zhao L, Wang Y, et al.2021. A new Leuconostoc citreum strain discovered in the traditional sweet potato sour liquid fermentation as a novel bioflocculant for highly efficient starch production[J]. Food Research International, 144: 110327. [59] Wangpaiboon K, Padungros P, Nakapong S, et al.2018. An α-1, 6-and α-1, 3-linked glucan produced by Leuconostoc citreum ABK-1 alternansucrase with nanoparticle and film-forming properties[J]. Scientific Reports, 8(1): 8340. [60] Wen Y P, Liu J X, Jin Q, et al.2024. Characterization of D-lactate dehydrogenase in Leuconostoc citreum KM20[J]. Food and Machinery, 40(2): 36-42. [61] Woo C, Jung S, Fugaban J I I, et al.2021 Bacteriocin production by Leuconostoc citreum ST110LD isolated from organic farm soil, a promising biopreservative[J]. Journal of Applied Microbiology, 131(3): 1226-1239. [62] Xu X, Zhang L, Han Y, et al.2021. Biosorption of Pb2+ and Zn2+ by Ca-alginate immobilized and free extracellular polysaccharides produced by Leuconostoc citreum B-2[J]. International Journal of Biological Macromolecules, 193: 2365-2373. [63] Yang Y, Feng F, Zhou Q, et al.2019. Isolation, purification, and characterization of exopolysaccharide produced by Leuconostoc citreum N21 from dried milk cake[J]. Transactions of Tianjin University, 25: 161-168. [64] Yang Y, Peng Q, Guo Y, et al.2015. Isolation and characterization of dextran produced by Leuconostoc citreum NM105 from manchurian sauerkraut[J]. Carbohydrate Polymers, 133: 365-372. [65] Yu H, Shao W, Xu G, et al.2023. Soil amendment with sorbitol and mannitol changes the soil microbial community and its enzymatic activities[J]. Journal of Soils and Sediments, 23(4): 1857-1876. [66] Zhao B, Du R, Wang J, et al.2020a. Purification and biochemical characterization of a novel glucansucrase from Leuconostoc citreum B-2[J]. Biotechnology Letters, 42: 1535-1545. [67] Zhao D, Liu L, Jiang J, et al.2020b. The response surface optimization of exopolysaccharide produced by Weissella confusa XG-3 and its rheological property[J]. Preparative Biochemistry & Biotechnology, 50(10): 1014-1022.