Isolation and Identification of A Myxobacterial Strain E10 and Optimization of Fermentation Conditions for Its Metabolites Against Phytophthora infestans
LIU Ya-Ping1*, ZHANG Yu2*, DING Yi-Xiu2, LI Jun-Da2, SHANG Shao-Jie2, ZHAO Xiao-Jing2, LIU Tao2, HOU Ke-Xin2, GAO Yan-Dong2, WANG Ning-Bin2, LIU Hui-Rong2**
1 Yakeshi City Senfeng Potato Industry Limited Liability Company, Hulun Buir 021008, China; 2 College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010018, China
Abstract:Myxobacteria are a group of higher prokaryotes with abundant and diverse metabolites. Phytophthora infestans is a pathogen of potato (Solanum tuberosum) late blight, which causes 10%~30% loss of potato industry in China every year. Myxobacteria have significant antagonistic activity against P. infestans, so it is of great research value to screen the active substances with antagonistic activity against P. infestans from the metabolites of myxobacteria. In this study, myxobacteria were isolated from soil samples in Ordos area and their antagonistic activity against P. infestans was detected. Then, the strains were identified by morphological and molecular biological methods, and the optimal fermentation conditions for the strains to produce the active substances against P. infestans and the effect of macroporous resin adsorption on the activity of myxobacterial metabolites were investigated by orthogonal experimental design. The results showed that the isolated strain E10 had a strong antagonistic activity against P. infestans, the diameter of the inhibition zone was 26 mm, the colony was circular and expanding, the edge was wavy, the fruiting body was yellow or orange-red, ridge-like protrusions, and coral-like branches.The strain belonged to Corallococcus exiguus. MD1 medium was the optimal fermentation medium for the strain, and 32 ℃, 0 concentration of NaCl and fermentation for 11 d were the optimal fermentation conditions for the strain. The addition of macroporous resin could effectively adsorb the active substances against P. infestans in the fermentation broth and increase the synthesis of these products, thus increasing their antagonistic ability. This study is of great significance for the future research and development of biopesticides against potato late blight.
刘雅萍, 张玉, 丁一秀, 李俊达, 尚少杰, 赵晓静, 刘涛, 候可心, 高艳东, 王宁斌, 刘惠荣. 粘细菌菌株E10的分离鉴定及其拮抗致病疫霉活性物质发酵条件的优化[J]. 农业生物技术学报, 2024, 32(12): 2870-2881.
LIU Ya-Ping, ZHANG Yu, DING Yi-Xiu, LI Jun-Da, SHANG Shao-Jie, ZHAO Xiao-Jing, LIU Tao, HOU Ke-Xin, GAO Yan-Dong, WANG Ning-Bin, LIU Hui-Rong. Isolation and Identification of A Myxobacterial Strain E10 and Optimization of Fermentation Conditions for Its Metabolites Against Phytophthora infestans. 农业生物技术学报, 2024, 32(12): 2870-2881.
[1] 褚福鑫, 李安章, 谢小林等. 2016. 1株能分泌抗MRSA活性物质的黏细菌的鉴定及发酵条件的优化[J]. 华南农业大学学报, 37(02): 20-29. (Chu F X, Li A Z, Xie X L, et al.2016. Identification and fermentation optimization of a myxobacterium producing anti-MRSA bioactive products[J]. Journal of South China Agricultural University, 37(02): 20-29. [2] 丁一秀. 2018. 鄂尔多斯高原地区粘细菌的分离鉴定及其拮抗致病疫霉活性的初步分析[D]. 硕士学位论文, 内蒙古农业大学, 导师: 刘惠荣, pp. 27-29. (Ding Y X, 2018. Isolation and identification of myxobacteria from ordos plateau area and preliminary analysis of their antibiotic activities against Phytophthora infestans[D]. Thesis for M.S., Inner MongoliaAgricultural University, Supervisor: Liu H R, pp. 27-29.) [3] 杜欣然, 王晶晶, 冉柒, 等. 2023. 黏细菌资源及其系统分类[J]. 微生物学通报, 50(07): 3104-3121. (Du X R, Wang J J, Ran Q, et al.2023. Resources and taxonomy of myxobacteria: A review[J]. Microbiology China, 50(7): 3104-3121.) [4] 李灿, 赵林, 王晓娜, 等. 2015. 树脂D202对埃博霉素发酵产量的影响[J]. 食品与药品, 17(03): 175-179. (Li C, Zhao L, Wang X N, et al.2015. Effect of resin D202 on fermentation yield of epothilones[J]. Food and Drug, 17(03): 175-179.) [5] 李颖, 蒋继志, 金鑫, 等. 2016. 3株放线菌对致病疫霉抑制作用的比较研究[J].中国植保导刊, 36(09):11-15; 85.(Li Y, Jiang J Z, Jin X, et al. 2016 Inhibition comparison of three actinomyces against Phytophthora infestans[J], China Plant Protection, 36(09): 11-15; 85.) [6] 廖宏娟, 江玉梅, 冶霞, 等. 2023. 球毛壳菌固态发酵产抗植物病原真菌活性物质的工艺优化[J]. 中国农业科学, 56(11): 2106-2117. (Liao H J, Jiang Y M, Ye X, et al.2023. Optimization of solid state fermentation for production of active substances against plant pathogenic fungi from Chaetomium globosum[J]. Scientia Agricultura Sinica, 56(11): 2106-2117.) [7] 马辉. 2007. 海洋粘细菌活性菌株筛选及菌株HW-1次生代谢产物研究[D]. 硕士学位论文, 华东师范大学, 导师: 吴良平, pp. 16-17. (Ma H, 2007. Screening of active marine myxobacteria and characterization of strain HW-1 secondary metabolites[D]. Thesis for M.S., East China Normal University, Supervisor: Wu L, pp. 16-17.) [8] 任兴波, 武志华, 崔海辰, 等. 2016. 致病疫霉拮抗菌株YR-7的分离鉴定及其活性物质[J]. 微生物学通报, 43(7): 1513-1523. (Ren X B, WU Z H, CUI H C, et al.2016. Isolation and identification of the strainYR-7 against Phytophthora infestans and study on its antibiotic substances[J]. Microbiology China, 43(7): 1513-1523.) [9] 王创. 2020. 粘细菌Myxococcus sp. BS对烟草青枯病的生防效果及其根际微生物调控机制[D]. 硕士学位论文, 南京农业大学, 导师: 曹慧, pp. 50. (Wang C. 2020. Biocontrol effect of myxobacteria Myxococcus sp. BS on tobacco bacterial wilt and its rhizosphere microbial regulation mechanism[D]. Thesis for M.S., Nanjing Agricultulral University, Supervisor: Cao H, pp. 50.) [10] 王春玲, 吕颖颖, 姚青, 等. 2021. 粘细菌资源挖掘与多相分类研究进展[J]. 微生物学通报, 48(08): 2870-2880. (Wang C L, Lü Y Y, Yao Q, et al.2021. Research progress in resources mining and polyphase classification of myxobacteria[J]. Microbiology China, 48(08): 2870-2880.) [11] 王鹏宇, 徐晨琪, 彭涵, 等. 2023. 一株产灵菌红素菌株黏质沙雷氏菌H04的分离鉴定及发酵条件优化[J].食品与发酵工业, 49(11): 20-26. (Wang P Y, Xu C Q, Peng H, et al.2023. Isolation,identification and optimization of fermentation conditions of a high-yielding prodigiosin Serratia marcescens H04[J]. Food and Fermentation Industries, 49(11): 20-26.) [12] 武志华. 2018. 内蒙古中部地区粘细菌分离及其抑制马铃薯晚疫病菌的活性和成分研究[D]. 硕士学位论文, 内蒙古农业大学, 导师: 刘惠荣, pp. 214-215. (Wu Z H.2018. Isolation of Myxobacteria from the Central Region of Inner Mongolia and Their Activity and Components against Potato Late Blight Pathogen[D]. Thesis for M.S., Inner Mongolia Agricultural University, Supervisor: Liu H R, pp. 214-215.) [13] 武志华, 郭维维, 董晔, 等. 2018a. 抗马铃薯晚疫病菌的粘细菌菌株X6-Ⅱ-1的分离鉴定、拮抗活性及发酵条件的优化[J]. 农业生物技术学报, 26(09): 1467-1479. (Wu Z H, Guo W W, Dong Y, et al.2018. Isolation and identification of Myxobacterial strain X6-II-1 resistant to Phytophthora infestans and its antibiotic activity and optimal fermentation condition[J]. Journal and Agricultural Biotechnology, 26(09): 1467-1479.) [14] 武志华, 李娜, 马秀枝, 等.2018b. 大兴安岭地区粘细菌资源的多样性及其生物活性[J]. 微生物学通报, 45(02): 266-283. (Wu Z H,Li N, Ma X Z, et al2018. Diversity and bioactivities of myxobacteria in Daxing'an Mountains[J]. Microbiology China, 45(02): 266-283.) [15] 武志华, 赵璞钰, 丁一秀, 等. 2020. 致病疫霉拮抗菌株B25-Ⅰ-3的鉴定及其次级代谢产物[J]. 微生物学通报, 47(11): 3586-3599. (Wu Z H, Zhao P Y, Ding Y X, et al.2020. Identification and secondary metabolites of strain B25-I-3 against Phytophthora infestans[J]. Microbiology China, 47(11): 3586-3599.) [16] 余培斌, 杜晶, 陈建新. 2020. 高温好氧堆肥过程中芽孢杆菌的筛选、鉴定及应用[J].食品与发酵工业, 46(12): 199-205;212.(Yu P B, Du J, Chen J X. 2020. Study on screening and identification of Bacillus in the process of high-temperature aerobic composting and its application[J]. Food and Fermentation industries, 46(12): 199-205;212.) [17] 翟辰欣, 吕莹, 汪绍杰, 等. 2023. 粘细菌生物活性产物及其应用研究进展[J]. 微生物学通报, 50(9): 4237-4259. (ZHAI C X, LÜ Y, WANG S J, et al.2023. Research progress in bioactive products of myxobacteria and their applications[J]. Microbiology China, 50(9): 4237-4259.) [18] 张宜涛. 2011. 橙色黏球菌的分离鉴定及其抑菌活性研究[D]. 硕士学位论文, 河南工业大学, 导师: 惠明, pp. 24-25. (Zhang Y T.2011. The studies on isolation, identification and antibacterial activity of myxococcus fulvus[D]. Thesis for M.S., Henan University of Technology. Supervisor: Hui M, pp. 24-25.) [19] 祝菊澧, 梁静思, 王伟伟, 等. 2020. 马铃薯致病疫霉研究进展[J]. 微生物学通报, 47(03): 952-966. (ZHU J L, LIANG J S, WANG W W, et al.2020. Research progress in Phytophthora infestans, pathogen of potato late blight[J]. Microbiology China, 47(03): 952-966.) [20] Anand A, Chinchilla D, Tan C, et al.2020. Contribution of hydrogen cyanide to the antagonistic activity of Pseudomonas strains against Phytophthora infestans[J]. Microorganisms, 8(8): 1144. [21] Bader C D, Panter F, Müller R.2020. In depth natural product discovery-Myxobacterial strains that provided multiple secondary metabolites[J]. Biotechnology Advances, 39: 107480. [22] Dworkin M.1996. Recent advances in the social and developmental biology of the Myxobacteria[J]. Microbiology Review, 60(1): 70-102. [23] de Andrade Lourenço D, Branco I, 2022. Choupina A. A systematic review about biological control of phytopathogenic Phytophthora cinnamomi[J]. Molecular Biology Reports, 49(10): 9947-9962. [24] Elansky S N, Pobedinskaya M A, Kokaeva L Y, et al.2015. Phytophthora infestans populations from the european part of Russia: Genotypic structure and metalaxyl resistance[J]. Journal of Plant Pathology, 97(3): 449-456. [25] Garrity G M, Bell J A, Lilburn T G.2004. Bergey's manual of systematic bacteriology[M]. Springer-Verlag, New York, pp. 134-137. [26] Herrmann J, Fayad A A, Müller R.2017. Natural products from myxobacteria: Novel metabolites and bioactivities[J]. Natural Product Reports, 34(2): 135-160. [27] Kiiker R, Hansen M, Williams I H, et al.2018. Outcome of sexual reproduction in the Phytophthora infestans population in Estonian potato fields[J]. European Journal of Plant Pathology, 152(2): 395-407. [28] Mohr K I.2018. Diversity of myxobacteria-we only see the tip of the iceberg[J]. Microorganisms, 6(3): 84. [29] Randall E, Young V, Sierotzki H, et al.2014. Sequence diversity in the large subunit of RNA polymerase I contributes to Mefenoxam insensitivity in Phytophthora infestans[J]. Molecular Plant Pathology, 15(7): 664-676. [30] Tobias N J, Shi Y M, Bode H B.2018. Refining the Natural Product Repertoire in Entomopathogenic Bacteria[J]. Trends in Microbiology, 26(10):833-840. [31] Waite D W, Chuvochina M, PELIKAN C, et al.2020. Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities[J]. International Journal of Systematic and Evolutionary Microbiology, 70(11): 5972-6016. [32] Wang T, Lv J L, Xu J, et al.2023. The catalase-peroxidase PiCP1 plays a critical role in abiotic stress resistance, pathogenicity and asexual structure development in Phytophthora infestans[J]. Environmental Microbiology, 25(2):532-547. [33] Wang Y, Zhang C, Liang J, et al.2020. Surfactin and fengycin B extracted from Bacillus pumilus W-7 provide protection against potato late blight via distinct and synergistic mechanisms[J]. Applied Microbiology Biotechnology, 104: 7467-7481. [34] Wu Y G, Huang S L, Li W J, et al.2016. Identification and mating type determination of Phytophthora strains causing blight on two cucurbit crops in South China[J]. Tropical Plant Pathology, 41(1): 24-32. [35] Weissman K J, Müller R.2010. Myxobacterial secondary metabolites: Bioactivities and modes-of-action[J]. Natural Product Reports, 27(9): 1276-1295. [36] Xia C, Zhao Y, Zhang L, et al.2023. Myxobacteria restrain Phytophthora invasion by scavenging thiamine in soybean rhizosphere via outer membrane vesicle-secreted thiaminase I[J]. Nature Communications, 14(1): 5646. [37] Ye X, Xu C, Xie T T, et al.2023. Myxobacterial outer membrane β-1,6-glucanase induced the cell death of Fusarium oxysporum by destroying the cell wall integrity[J]. Applied and Environmental Microbiology, 89(1): e01236-22.