Abstract:Phosphorus in soil exists in complex forms, such as phytic acid, which is difficult to be absorbed and utilized by plants. This problem can be effectively solved through degrading soil phytic acid by phytase and releasing phosphorus. In this study, high-yielding phytase strains were selected from the soil, and the composition of the fermentation medium and culture conditions were optimized by the Response Surface Methodology. Phytase was prepared into microcapsule enzyme preparation with sodium alginate (SA) and CaCl2 as embedding and crosslinking agents, and its storage stability and growth-promoting effect on corn (Zea mays) were investigated. The results showed that a strain of phytase-producing bacteria was identified as Pseudomonas corrugata by 16S rRNA. The optimal medium composition and fermentation conditions were determined through fermentation optimization, and the phytase activity after optimization was (435.70±1.87) U/mL, which was increased by 82.16% compared with that before optimization. The microcapsule enzyme preparation prepared with 3% SA and 3% CaCl2 had the characteristics of good pellet formation and high enzyme activity. After 30 d of storage, the enzyme activity of (85.63±1.73)% remained. The experiment showed that microcapsule enzyme preparation significantly promoted corn growth, increasing corn seedling dry weight, plant height, root dry weight, root length and fresh seedling weight by 48.59%~304.46%. This study provided a method of strain screening, fermentation optimization and preparation of microcapsule enzyme preparation, which is of great significance for the extensive application of microcapsule enzyme preparations in agricultural production and new bacterial fertilizers.
[1] 成艳红, 黄欠如, 武琳, 等. 2020. 红壤旱地一株自生固氮菌的筛选鉴定及其固氮能力评估[J]. 中国农学通报, 6(09): 100-106. (Cheng Y H, Huang Y R, Wu L, et al.2020.Screening and identification of an autogenous nitrogen-fixing bacterium and its nitrogen fixing ability evaluation in red soil dryland[J]. Chinese Agricultural Science Bulletin, 6(09): 100-106.) [2] 毕会敏, 杨宗玲, 范方宇, 等. 2023. 纳米SiO2改性无籽刺梨黄酮微胶囊的制备及特性[J].食品与发酵工业, 49(02): 74-81. (Bi H M, Yang Z L, Fan F Y, et al.2023. Preparation and properties of seedless roxanthoflavone microcapsules modified by nano-SiO2[J]. Food and Fermentation Industry, 49(02): 74-81.) [3] 巢梦颖, 凌新龙, 刘雨鹭, 等. 2023. 丝素蛋白/海藻酸钠水凝胶的制备及其释药性能[J]. 纺织高校基础科学学报, (06): 22-29. (Chao M Y, Ling X L, Liu Y L, et al.2023. Preparation and drug release properties of fibroin/sodium alginate hydrogel[J]. Journal of Basic Science of Textile Universities, 36(06): 22-29.) [4] 东秀珠, 蔡妙英. 2001. 常见细菌系统鉴定手册: 常见细菌系统鉴定手册[M]. 科学出版社, 北京, pp. 364-379. (Dong X Z, Cai M Y.2001. Handbook of identification of common bacterial systems: Handbook of identification of common bacterial systems[M]. Science Press, Beijing, pp. 364-379.) [5] 董羽嘉, 何艳慧, 武占省. 2021. 微胶囊化植物根际促生菌剂的研究进展[J]. 生物加工过程, 19(4): 404-412. (Dong Y J, He Y H, Wu Z S.2021. Research progress of microencapsulated rhizosphere growth promoting agents for plants[J]. Bioprocessing, 19(4): 404-412.) [6] 葛淼淼, 薄永琳, 刘宸, 等. 2023. 土壤产铁载体细菌的筛选及其对铁氧化物的活化与利用[J]. 微生物学通报, 50(03): 1062-1072. (Ge M M, Bo Y L, Liu C, et al.2023. Screening of soil iron-bearing carrier bacteria and their activation and utilization of iron oxides[J]. Chinese Microbiology Bulletin, 50(03): 1062-1072.) [7] 胡晓娟, 许云娜, 徐创文, 等. 2021. 解磷菌PSBHY-3的发酵培养工艺参数优化[J]. 南方农业学报, 52(02): 475-482. (Hu X J, Xu Y N, Xu X W, et al.2021. Optimization of fermentation and culture parameters of phosphorolytic bacterium PSBHY-3[J]. Journal of Southern Agriculture, 52(02): 475-482.) [8] 黄臣, 杨凯元, 高鹏, 等. 2022. 达乌里胡枝子根际解磷细菌的筛选、鉴定及特性研究[J].草地学报, 30(09): 2345-2355. (Huang C, Yang K Y, Gao P, et al.2022. Screening, identification and characterization of rhizosphere phosphorus-solving bacteria from Lespedeza dauri[J]. Journal of Grassland Science, 30(09): 2345-2355.) [9] 李福艳, 刘晓玉, 颜静婷, 等. 2021. 三株产吲哚乙酸根际促生芽孢杆菌的筛选鉴定及其促生作用[J]. 浙江农业学报, 33(05): 873-884. (Li F Y, Liu X Y, Yan J T, et al.2021. Screening, identification and growth-promoting effect of three strains of Bacillus rhizosphere growth-promoting bacteria producing indoleacetic acid[J]. Journal of Zhejiang Agricultural Sciences, 33(05): 873-884.) [10] 李明源, 王继莲, 姚拓, 等. 2022. 产ACC脱氨酶细菌的筛选及对低温胁迫下垂穗披碱草生长的影响[J]. 草原与草坪, 42(05): 37-45. (Li L Y, Wang J L, Yao T, et al.2022. Screening of ACC deaminase-producing bacteria and its effect on the growth of sagging Panicularia under low temperature stress[J]. Grassland and Turf, 42(05): 37-45.) [11] 李瑞平, 谢瑞芝, 罗洋, 等. 2023. 典型黑土区不同保护性耕作方式对玉米生长发育及产量形成的影响[J].中国生态农业学报, 32(01): 71-82. (Li R Q, Xie R Z, Luo Y, et al.2023. Effects of different conservation tillage methods on maize growth and yield formation in typical black soil area[J]. Chinese Journal of Eco-Agriculture, 32(01): 71-82) [12] 李文, 莫港澳, 孙欣, 等. 2019. 不动杆菌JL-1降解磷的性能研究[J]. 江苏农业科学, 47(12): 311-315. (Li W, Mo H G, Sun X, et al.2019. Study on the performance of Acinetobacter JL-1 in reducing phosphorus[J]. Jiangsu Agricultural Sciences, 47(12): 311-315.) [13] 苏奇倩, 丁豪杰, 李晓锋, 等. 2023. 微生物植酸酶及其对土壤植酸的矿化作用综述[J]. 环境化学, 42(4): 1366-1380. (Su Q Q, Ding H J, Li X F, et al.2023. Microbial phytase and its mineralization on soil phytic acid[J]. Environmental Chemistry, 42(4): 1366-1380.) [14] 王伯通, 孙得芳, 曹莹莹, 等. 2019. 磷钒钼黄比色法快速测定复合肥料中聚合态磷[J]. 磷肥与复肥, 34(04): 43-44; 50. (Wang B T, Sun D F, Cao Y Y, et al.2019.Rapid determination of polymerized phosphorus in composite fertilizer by phosphate-vanadium molybdenum yellow colorimetric method[J]. Phosphorus and Compound Fertilizer, 34(04): 43-44; 50.) [15] 项郑昊, 周化岚, 张建. 2021. 海藻酸钠微胶囊制备及其在微生物包埋中的应用[J]. 工业微生物, 51(01): 43-49. (Xiang Z H, Zhou H L, Zhang J.2021. Preparation of sodium alginate microcapsules and its application in microbial embedding[J]. Industrial Microbiology, 51(01): 43-49.) [16] 徐致远, 郭本恒, 陈卫. 2005. 乳酸菌微胶囊技术的研究进展[J]. 乳业科学与技术, (5): 198-201. (Xu Z Y, Guo B H, Chen W. 2005. Research progress of lactic acid bacteria microcapsule technology[J]. Dairy Science and Technology, (5): 198-201.) [17] 杨俊慧, 公维丽, 杨艳, 等. 2018. 植酸酶工程菌产酶条件优化研究[J]. 山东科学, 31(04): 79-84. (Yang J H, Gong W L, Yang Y, et al.2018. Optimization of enzyme-producing conditions of phytase engineering bacteria[J]. Shandong Science, 31(04): 79-84.) [18] 张成凯, 蒙悦, 殷志秋, 等. 2022. 高效解硅菌的分离鉴定及其促生能力[J]. 微生物学通报, 49(11): 4740-4751. (Zhang C K, Meng Y, Yin Z Q, et al.2022. Isolation, identification and growth-promoting ability of high-efficiency silicolytic bacteria[J]. Chinese Journal of Microbiology, 49(11): 4740-4751.) [19] 张园萍, 马博宇, 余长宏, 等. 2023. 碳化硅-酚醛树脂微胶囊的制备及表征[J]. 塑料科技, 51(07): 13-17. (Zhang Y P, Ma B Y, Yu C H, et al.2023. Preparation and characterization of silicon carbide phenolic resin microcapsules[J]. Plastic Science and Technology, 51(07): 13-17.) [20] 郑璐. 2014. 海藻酸钠固定化α-淀粉酶的研究[D]. 硕士学位论文, 华中农业大学, 导师: 吴元欣, pp. 14-16. (Zheng L.2014. Study on immobilized α-amylase by sodium alginate[D]. Thesis for M.S., Huazhong Agricultural University, Supervisor: Wu Y X, pp. 14-16.) [21] Ahmed B, Jean-Baptiste F, Zakaria L, et al.2021. Phytate and microbial suspension amendments increased soybean growth and shifted microbial community structure[J]. Microorganisms, 9(9): 2-21. [22] Akhmetova A I, Nyamsuren C, Balaban N P, et al.2013. Isolation and characterization of a new bacillar phytase[J]. Bioorganicheskaia Khimiia, 39(4): 430-436. [23] Atwa N, Awad G, Esawy M,et al.2015. Comparative studies of free and immobilized phytase, produced by Penicillium purpurogenu GE1, using grafted alginate/carrageenan beads[J]. Egyptian Pharmaceutical Journal, 14(2): 87. [24] Avramenko M, Kazunori N,Satoru K.2022. State-of-the-art review on engineering uses of calcium phosphate compounds: An eco-friendly approach for soil improvement[J]. Materials, 15(19): 2-24. [25] Balaban N P, Suleimanova A D, Valeeva L R, et al.2017. Microbial phytases and phytate: Exploring opportunities for sustainable phosphorus management in agriculture[J]. American Journal of Molecular Biology, 07(01): 11-29. [26] Filippovich S Y, Isakova E P, Gessler N N, et al.2023. Advances in immobilization of phytases and their application[J]. Bioresource Technology, 379. [27] Gerke J.2015. Phytate (inositol hexakisphosphate) in soil and phosphate acquisition from inositol phosphates by higher plants. A review[J]. Plants, 4(2): 253-266. [28] Gessler N N, Serdyuk E G, Isakova E P, et al.2018. Phytases and the prospects for their application (Review)[J]. Applied Biochemistry and Microbiology, 54(4): 352-360. [29] Giaveno C, Celi L, Richardson A E, et al.2010. Interaction of phytases with minerals and availability of substrate affect the hydrolysis of inositol phosphates[J]. Soil Biology and Biochemistry, 42(3): 491-498. [30] Hanif M K, Hameed S, Imran A, et al.2015. Isolation and characterization of a beta-propeller gene containing phosphobacterium Bacillus subtilis strain KPS-11 for growth promotion of potato (Solanum tuberosum L.)[J]. Frontiers in Microbiology, 6: 583. [31] Hunter P J, Teakle G R, Bending G D.2014. Root traits and microbial community interactions in relation to phosphorus availability and acquisition, with particular reference to Brassica[J]. Frontiers in Plant Science, 5: 27. [32] Kumar V, Yadav A N, Saxena A, et al.2016. Unravelling rhizospheric diversity and potential of phytase producing microbes[J]. SM Journal of Biology, 2(1): 1009. [33] Jatuwong K, Suwannarach N, Kumla J,et al.2020. Bioprocess for production, characteristics, and biotechnological applications of fungal phytases[J]. Frontiers in Microbiology, 11: 188. [34] Li G E, Kong W L, Wu X Q, et al.2021. Phytase-producing Rahnella aquatilis JZ-GX1 promotes seed germination and growth in corn (Zea mays L.)[J]. Microorganisms, 9(8): 2-16. [35] Li Q, Li J H, Li M Y, et al.2023. In-depth characterization of phytase-producing plant growth promotion bacteria isolated in alpine grassland of Qinghai-Tibetan plateau[J]. Frontiers in Microbiology, 13: 1-18. [36] Liu X, Han R, Cao Y, et al.2022. Enhancing phytate availability in soils and phytate-P acquisition by plants: A review[J]. Environmental Science and Technology, 56(13): 9196-9219. [37] Menezes-Blackburn D, Giles C, Darch T, et al.2018. Opportunities for mobilizing recalcitrant phosphorus from agricultural soils: A review[J]. Plant Soil, 427(1): 5-16. [38] Menezes-Blackburn D, Jorquera M A, Ralf G, et al.2013. Phytases and phytase-labile organic phosphorus in manures and soils[J]. Critical Reviews in Environmental Science and Technology, 43(9): 916-954. [39] Mo J X, Wang Z G, Xu W H, et al.2015. Enhanced production of dimethyl phthalate-degrading strain Bacillus sp. QD14 by optimizing fermentation medium[J]. Electronic Journal of Biotechnology, 18(3): 244-251. [40] Raghothama K G, Karthikeyan A S.2005. Phosphate Acquisition[J]. Plant and Soil, 274(1-2): 37-49. [41] Richardson A E, Hadobas P A,Hayes J E.2002. Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate[J]. The Plant Journal, 25(6): 641-649. [42] Sattari S Z, Bouwman A F, Giller K E, et al.2012. Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle[J]. Proceedings of the National Academy of Sciences of the USA, 109(16): 6348-6353. [43] Scervino J M, Papinutti V L, Godoy M S, et al.2011. Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production[J]. Journal of Applied Microbiology, 110(5): 1215-1223. [44] Singh B, Boukhris I, Pragya, et al.2020. Contribution of microbial phytases to the improvement of plant growth and nutrition: A review[J]. Pedosphere, 30(3): 295-313. [45] Sui Z M, Yin J, Huang J G, et al.2021. Phosphorus mobilization and improvement of crop agronomic performances by a new white‐rot fungus Ceriporia lacerate HG2011[J]. Journal of the Science of Food and Agriculture, 102(4): 1640-1650. [46] Sun M J, He Z Q, Jaisi D P.2021. Role of metal complexation on the solubility and enzymatic hydrolysis of phytate[J]. PLOS ONE, 16(8): e0255787. [47] Sun X F, Liu F, Jiang W, et al.2023. Talaromyces purpurogenus isolated from rhizosphere soil of maize has efficient organic phosphate-mineralizing and plant growth-promoting abilities[J]. Sustainability, 15(7): 2-13. [48] Timofeeva A, Galyamova M, Sedykh S.2022. Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture[J]. Plants, 11(16): 2-23. [49] Turner B L, Paphazy M J, Haygarth P M, et al.2002. Inositol phosphates in the environment[J]. Philosophical Transactions of The Royal Society B-Biological Sciences, 357(1420): 449-469.