Research Progress on Functionalized Ferritin Nanoparticle Vaccine
ZHANG Rong1,2,3, WEI Yan-Ming1,*, RU Yi3
1 College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; 2 China Agricultural Vet. Bio. Science and Technology Co., Ltd., Lanzhou 730046, China; 3 Gansu Province Research Center for Basic Disciplines of Pathogen Biology/Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences/College of Veterinary Medicine, Lanzhou University/State Key Laboratory for Animal Disease Control and Prevention, Lanzhou 730046, China
Abstract:Among the multitude of nanocarriers, protein nanoparticles are hot topic in vaccine nanobiotechnology due to their biocompatibility, and flexibility of design. Compared with isolated protein subunits, protein nanoparticle vaccines are more readily taken up by antigen-presenting dendritic cells. Ferritin is a ubiquitous iron storage and detoxification protein that protects cells from iron-induced oxidative damage. Ferritin have remarkable chemical and thermal stability, reversible assembly and disassembly processes, and ability for engineering to display antigens. Ferritin is not only a useful nanoreactor and nanocarrier, but also an effective platform for vaccine development platform. This review summarized structure-function properties, self-assembly, novel bioengineering strategies, production and purification of ferritin nanoparticles, and functionalization of ferritin. Application progress and foreground to the field of vaccine development of ferritin were also discussed. This review provides theoretical support for nanobiotechnology in vaccine development.
[1] Bhaskar S, Lim S.2017. Engineering protein nanocages as carriers for biomedical applications[J]. NPG Asia Materials, 9(4): e371. [2] Brisse M, Vrba S M, Kirk N, et al.2020. Emerging concepts and technologies in vaccine development[J]. Frontiers in Immunology, 11: 583077. [3] Brune K D, Howarth M.2018. New routes and opportunities for modular construction of particulate vaccines: Stick, click, and glue[J]. Frontiers in Immunology, 9: 1432. [4] Carmen J M, Shrivastava S, Lu Z, et al.2021. SARSCoV-2 ferritin nanoparticle vaccine induces robust innate immune activity driving polyfunctional spike-specific T cell responses[J]. npj Vaccines, 6(1): 151. [5] Carmona F, Poli M, Bertuzzi M, et al.2017. Study of ferritin self-assembly and heteropolymer formation by the use of fluorescence resonance energy transfer (FRET) technology[J]. Biochimica Biophysica Acta General Subjects, 1861(3): 522-532. [6] Chakraborti S, Chakrabarti P.2019. Self-assembly of ferritin: Structure, biological function and potential applications in nanotechnology[J]. Advances in Experimental Medicine and Biology, 1174: 313-329. [7] Chen H, Zhang S, Xu C, et al.2016. Engineering protein interfaces yields ferritin disassembly and reassembly under benign experimental conditions[J]. Chemical Communications, 52(46): 7402-7405. [8] Chiancone E, Ceci P, Ilari A, et al.2004. Iron and proteins for iron storage and detoxification[J]. Biometals, 17(3): 197-202. [9] Chiou B, Connor J R.2018. Emerging and dynamic biomedical uses of ferritin[J]. Pharmaceuticals, 11(4): 124. [10] Ducasse R, Wang W A, Navarro M G, et al.2017. Programmed self-assembly of a biochemical and magnetic scaffold to trigger and manipulate microtubule structures[J]. Scientific Reports, 7(1): 11344. [11] Falvo E, Tremante E, Fraioli R, et al.2013. Antibody-drug conjugates: Targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin[J]. Nanoscale, 5(24): 12278-12285. [12] Fantoni N Z, El-Sagheer A H, Brown T.2021. A Hitchhiker's guide to click-chemistry with nucleic acids[J]. Chemical Reviews, 121(12): 7122-7154. [13] Guo Y, He W, Mou H, et al.2021. An engineered receptor-binding domain improves the immunogenicity of multivalent SARS-CoV-2 vaccines[J]. mBio, 12(3): e00930-21. [14] Hatlem D, Trunk T, Linke D, et al.2019. Catching a SPY: Using the spycatcher-spytag and related systems for labeling and localizing bacterial proteins[J]. International Journal of Molecular Sciences, 20(9): 2129. [15] He D, Marles-Wright J.2015. Ferritin family proteins and their use in bionanotechnology[J]. New Biotechnology, 32(6): 651-657. [16] Huard D J, Kane K M, Tezcan F A.2013. Re-engineering protein interfaces yields copper-inducible ferritin cage assembly[J]. Nature Chemical Biology, 9(3): 169-176. [17] Jutz G, van Rijn P, Santos Miranda B.2015. Ferritin: A versatile building block for bionanotechnology[J]. Chemical Reviews, 115: 1653-1701. [18] Kamp H D, Swanson K A, Wei R R, et al.2020. Design of a broadly reactive Lyme disease vaccine[J]. npj Vaccines, 5(1): 33. [19] Kanekiyo M, Wei C J, Yassine H M, et al.2013. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies[J]. Nature, 499(7456): 102-106. [20] Kang Y J, Park D C, Shin H H, et al.2012. Incorporation of thrombin cleavage peptide into a protein cage for constructing a protease-responsive multifunctional delivery nanoplatform[J]. Biomacromolecules, 13(12): 4057-4064. [21] Khoshnejad M, Greineder C F, Pulsipher K W, et al.2018a. Ferritin nanocages with biologically orthogonal conjugation for vascular targeting and imaging[J]. Bioconjugate Chemistry, 29(4): 1209-1218. [22] Khoshnejad M, Parhiz H, Shuvaev V V, et al.2018b. Ferritin-based drug delivery systems: Hybrid nanocarriers for vascular immunotargeting[J]. Journal of Controlled Release, 282: 13-24. [23] Kim S, Kim G S, Seo J, et al.2016. Double-chambered ferritin platform: Dual-function payloads of cytotoxic peptides and fluorescent protein[J]. Biomacromolecules, 17(1): 12-19. [24] Lee E J, Lee N K, Kim I S.2016. Bioengineered protein-based nanocage for drug delivery[J]. Advanced Drug Delivery Reviews, 106: 157-171. [25] Li C Q, Soistman E, Carter D C.2006. Ferritin nanoparticle technology..A new platform for antigen presentation and vaccine development[J]. Industrial Biotechnology, 2: 143-147. [26] Li Z, Maity B, Hishikawa Y, et al.2022. Importance of the subunit-subunit interface in ferritin disassembly: A molecular dynamics study[J]. Langmuir, 38(3): 1106-1113. [27] Lung P, Yang J, Li Q.2020. Nanoparticle formulated vaccines: Opportunities and challenges[J]. Nanoscale, 12(10): 5746-5763. [28] Luo W, Guo H, Ye Y, et al.2019. Construction and in vitro studies of magnetic-apoferritin nanocages conjugated with KGDS peptide targeted at activated platelets for the MRI diagnosis of thrombus[J]. Journal of Nanoparticle Research, 21: 1-12. [29] Ma X, Li S J, Liu Y, et al.2022. Bioengineered ferritin nanocages for cancer therapy[J]. Chemical Society Reviews, 51(12): 5136-5174. [30] Matsumoto D, Tamamura H, Nomura W.2020. TALEN-based chemically inducible, dimerization-dependent, sequence-specific nucleases[J]. Biochemistry, 59(2): 197-204. [31] Mohanty A, K M, Jena S S, et al.2021. Kinetics of ferritin self-assembly by laser light scattering: Impact of subunit concentration, pH, and ionic strength[J]. Biomacromolecules, 22(4): 1389-1398. [32] Mohanty A, Parida A, Raut R K, et al.2022. Ferritin: A promising nanoreactor and nanocarrier for bionanotechnology[J]. ACS Biological Medicinal Chemistry, 2(3): 258-281. [33] Olshefsky A, Richardson C, Pun S H, et al.2022. Engineering self-assembling protein nanoparticles for therapeutic delivery[J]. Bioconjugate Chemistry, 33(11): 2018-2034. [34] Palombarini F, Ghirga F, Boffi A, et al.2019. Application of crossflow ultrafiltration for scaling up the purification of a recombinant ferritin[J]. Protein Expression and Purification, 163: 105451. [35] Qi M, Zhang X E, Sun X, et al.2018. Intranasal nanovaccine confers homo- and hetero-subtypic influenza protection[J]. Small, 14(13): e1703207. [36] Rehm B H A.2017. Bioengineering towards self-assembly of particulate vaccines[J]. Current Opinion in Biotechnology, 48: 42-53. [37] Rodrigues M Q, Alves P M, Roldão A.2021. Functionalizing ferritin nanoparticles for vaccine development[J]. Pharmaceuticals, 13(10): 1621. [38] Sevieri M, Pinori M, Chesi A, et al.2023. Novel bioengineering strategies to improve bioavailability and in vivo circulation of H-ferritin nanocages by surface functionalization[J]. ACS Omega, 8(8): 7244-7251. [39] Smolskaya S, Andreev Y A.2019. Site-specific incorporation of unnatural amino acids into Escherichia coli recombinant protein: Methodology development and recent achievement[J]. Biomolecules, 9(7): 255. [40] Song N, Zhang J, Zhai J, et al.2021. Ferritin: A multifunctional nanoplatform for biological detection, imaging diagnosis, and drug delivery[J]. Accounts of Chemical Research, 54(17): 3313-3325. [41] Srivastava A K, Arosio P, Poli M, et al.2021. A novel approach for the synthesis of human heteropolymer ferritins of different H to L subunit ratios[J]. Journal of Molecular Biology, 433(19): 167198. [42] Sudarev V V, Dolotova S M, Bukhalovich S M, et al.2023. Ferritin self-assembly, structure, function, and biotechnological applications[J]. International Journal of Biological Macromolecules, 224: 319-343. [43] Suk J S, Xu Q, Kim N, et al.2016. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery[J]. Advanced Drug Delivery Reviews, 99: 28-51. [44] Swanson K A, Rainho-Tomko J N, Williams Z P, et al.2020. A Respiratory syncytial virus (RSV) F protein nanoparticle vaccine focuses antibody responses to a conserved neutralization domain[J]. Science Immunology, 5(47): eaba6466. [45] Tokatlian T, Read B J, Jones C A, et al.2019. Innate immune recognition of glycans targets HIV nanoparticle immunogens to germinal centers[J]. Science, 363(6427): 649-654. [46] Uchida M, Kang S, Reichhardt C, et al.2010. The ferritin superfamily: Supramolecular templates for materials synthesis[J]. Biochimica et Biophysica Acta, 1800(8): 834-845. [47] Wang W, Huang B, Zhu Y, et al.2021. Ferritin nanoparticle-based SARS-CoV-2 RBD vaccine induces a persistent antibody response and long-term memory in mice[J]. Cellular & Molecular Immunology, 18(3): 749-751. [48] Wang W, Zhou X, Bian Y, et al.2020. Dual-targeting nanoparticle vaccine elicits a therapeutic antibody response against chronic hepatitis B[J]. Nature Nanotechnology, 15(5): 406-416. [49] Wang Z, Gao H, Zhang Y, et al.2017. Functional ferritin nanoparticles for biomedical applications[J]. Frontiers of Chemical Science and Engineering, 11(4): 633-646. [50] Wang Z, Xu L, Yu H, et al.2019. Ferritin nanocage-based antigen delivery nanoplatforms: Epitope engineering for peptide vaccine design[J]. Biomater Science, 7(5): 1794-1800. [51] Wang Z, Zhao Y, Zhang S, et al.2022. Re-engineering the inner surface of ferritin nanocages enables dual drug payloads for synergistic tumor therapy[J]. Theranostics, 12(4): 1800-1815. [52] Zhang C, Zhang X, Zhao G.2020, Ferritin nanocage: A versatile nanocarrier utilized in the field of food, nutrition, and medicine[J]. Nanomaterials(Basel), 10(9): 1894. [53] Zhang Y, Orner B P.2011. Self-assembly in the ferritin nano-cage protein superfamily[J]. International Journal of Molecular Sciences, 12(8): 5406-5421. [54] Zhou T, Zhu J, Yang Y, et al.2014. Stuck transplanting supersites of HIV-1 vulnerability[J]. Public Library of Science, 9(7): e99881.