Cloning of UePkc1 in Ustilago esculenta and Its Expression Analysis in Hypha Growth and the Infected Zizania latifolia
QI Xiao-Qing, ZHOU Ya-Ping, LIU Jing-Xi, ZHENG Yu-Jie, SHANG Yuan-Yuan, TANG Jin-Tian, XIA Wen-Qiang, ZHANG Ya-Fen, YE Zi-Hong, CUI Hai-Feng*
College of Life Sciences/Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China
Abstract:The development of swollen stem was induced by the infection of Ustilago esculenta in the stem of Zizania latifolia. The mycelium growth of U. esculenta and its response to environmental factors played an important role in regulating the development of swollen stem in Z. latifolia. Protein kinase C1 (Pkc1) was an important regulator of fungi which regulated the cell polar growth and responsed to stimulus feedback. In this research, the UePkc1 gene (GenBank No. OQ572333) was cloned with the cDNA length of 3 573 bp, which encoded 1 190 amino acids and had the STKc_PKC conserved domain of PKC protein. After treatment with 3 types cell wall interferers (Congo red, fluorescent brightener and sodium dodecyl sulfate) and 2 different temperatures (15 ℃ and 35 ℃) during culture of U. esculenta in vitro, the swelling and shortening of basidiospore cells were observed by treatments with cell wall interfering agents and high temperature. The fusion mycelium of U. esculenta was shortened in the treatments with cell wall interfering agents, while no fusion mycelium was found in the 2 treatments with different temperatures. qPCR analysis showed that the expression of UePkc1 in U. esculenta was significantly increased after treatment with cell wall interferers for 48 h, and the expression of UePkc1 in U. esculenta treated with low temperature for 72 h was also significantly increased, while it was significantly decreased after treatment with high temperature. These results suggested that UePkc1 gene was involved in the maintenance of cell wall integrity and responsed to ambient temperature regulation in U. esculenta. Besides, there were significant differences in the expression of UePkc1 among the development stems in Z. latifolia between different swelling phenotypes. The expression of UePkc1 was the highest in the development stem of 10 cm in Grey-Jiaobai, while it was the highest at the early stage of stem in Normal-Jiaobai. Combined with the changes of growth and distribution of U. esculenta during stem development of Grey-Jiaobai and normal Jiaobai, It was preliminarily clarified that the mycelial growth of U.esculanta in the stem of plants was regulated by the expression of UePkc1, which might be positively correlated with the increasing of mycelial quantity related to the swollen of the stem. This study provides technical reference and theoretical basis for the research on the interaction mechanism of inducing the swollen and development of the stem in Z. latifolia infected by U. esculenta.
[1] 曹乾超, 张雅芬, 崔海峰, 等. 2015. 菰黑粉菌分离方法的研究[J]. 长江蔬菜, (22): 195-197. (Cao Q C, Zhang Y F, Cui H F, et al. 2015. Study on the isolation method of Ustilago esculenta[J]. Journal of Changjiang Vegetables , (22): 195-197.) [2] 胡映莉, 卞加慧, 郭月美, 等. 2022. UeRbf1调控菰黑粉菌丝状生长和致病力的作用研究[J]. 植物病理学报, 52(02): 165-178. (Hu Y L, Bian J H, Guo Y M, et al.2022. UeRbf1 is required for filamentous growth and the virulence in Ustilago esculenta[J]. Acta Phytopathologica Sinica, 52(02): 165-178.) [3] 金晔, 崔海峰, 安欣欣, 等. 2015. 龙茭2号耐冷相关差异表达蛋白鉴定及分析[J]. 农业生物技术学报, 23(04): 502-512. (Jin Y, Cui H F, An X X, et al.2015. Identification and analysis of differential expression proteins realated to chilling tolerance in Longjiao 2 (Zizania latifolia)[J]. Journal of Agricultural Biotechnology, 23(04): 502-512.) [4] 康璐瑶, 邢阿宝, 崔海峰, 等. 2017. ZlADR1基因的克隆及其在茭白孕茭中的表达[J]. 农业生物技术学报, 25(11): 1799-1808. (Kang L Y, Xing A B, Cui H F, et al.2017. Cloning and expression of ZlADR1 gene during the formation of swollen stem of Zizania latifolia[J]. Journal of Agricultural Biotechnology, 25(11): 1799-1808.) [5] 王培又, 张雅芬, 葛倩雯, 等. 2020. 菰黑粉菌UePkaC基因的克隆及功能研究[J]. 农业生物技术学报, 28(08): 1477-1489. (Wang P Y, Zhang Y F, Ge Q W, et al.2020. Cloning and functional study of UePkaC gene in Ustilago esculenta[J].Journal of Agricultural Biotechnology, 28(08): 1477-1489.) [6] 吴敏, 张雅芬, 夏文强, 等. 2019. 菰黑粉菌UeCS3.1基因的克隆及功能研究[J]. 农业生物技术学报, 27(08): 1467-1477. (Wu M, Zhang Y F, Xia W Q, et al.2019. Cloning and functional study of UeCS3.1 gene in Ustilago esculenta[J]. Journal of Agricultural Biotechnology, 27(08): 1467-1477.) [7] 吴雪兰, 郝海波, 黄建春, 等. 2021. CWI和HOG信号通路基因在斑玉蕈不同发育阶段的表达模式[J]. 菌物学报, 40(6): 1388-1399. (Wu X L, Hao H B, Huang J C, et al.2021. The expression pattern of CWI and HOG signal pathway genes during the growth and development of Hypsizygus marmoreus[J]. Mycosystema, 40(6): 1388-1399.) [8] 邢阿宝, 崔海峰, 俞晓平, 等. 2017. 茭白茎部CTK及ABA含量动态变化分析[J]. 中国计量大学学报, 28(02): 261-268. (Xing A B, Cui H F, Yu X P, et al.2017. Dynamic analysis of the contents of CTK and ABA in the stem of Zizania latifolia[J]. Journal of China University of Metrology, 28(02): 261-268.) [9] 邢阿宝, 崔海峰, 张雅芬, 等. 茭白栽培及其孕茭机制研究现状[J]. 浙江农业科学, 57(10): 1616-1621. (Xing A B, Cui H F, Zhang Y F, et al.2016. Research status of Jiaobai cultivation and its breeding mechanism[J]. Journal of Zhejiang Agricultural Sciences, 57(10): 1616-1621.) [10] 殷淯梅, 张雅芬, 曹乾超, 等. 2019. 茭白人工孕茭体系的建立及优化[J]. 农业生物技术学报, 27(8): 1498-1512. (Yin Y M, Zhang Y F, Cao Q C, et al.2019. Establishment and optimization of the artificial system for the formation of Jiaobai[J]. Journal of Agricultural Biotechnology, 27(8): 1498-1512.) [11] 张小华, 孙业盈, 卞伟华, 等. 2015. 真菌细胞壁抑制剂刚果红诱导酵母细胞凋亡及其机制研究[J]. 河南农业科学, 44(12): 65-69. (Zhang X H, Sun Y Y, Bian W H, et al.2015. Fungal cell wall-perturbing agent congo red-induced yeast apoptosis and its underlying mechanisms[J]. Journal of Henan Agricultural Sciences, 44(12): 65-69.) [12] Andrews P D, Stark M J.2000. Dynamic, Rho1p-dependent localization of Pkc1p to sites of polarized growth[J]. Journal of Cell Science, 113(15): 2685-2693. [13] Bakar N A, Karsani S A, Alias S A, et al.2020. Fungal survival under temperature stress: A proteomic perspective[J]. PeerJ, 8: e10423. [14] Bindu P C,Philip B.2001. Surfactant-induced lipid peroxidation in a tropical euryhaline teleost Oreochromis mossambicus (Tilapia) adapted to fresh water[J]. Indian Journal of Experimental Biology, 39(11): 1118-22. [15] Bruder Nascimento A C M O, Dos Reis T F, de Castro P A, et al.2016. Mitogen activated protein kinases SakAHOG1 and MpkC collaborate for Aspergillus fumigatus virulence[J]. Molecular MIcrobiology, 100(5): 841-859. [16] Cao C, Cao Z, Yu P, et al.2020. Genome-wide identification for genes involved in sodium dodecyl sulfate toxicity in Saccharomyces cerevisiae[J]. BMC Microbiology, 20(1): 1-11. [17] Chan Y. S, Thrower L B.1980. The host-parasite relationship between Zizania caduciflora Turcz.and Ustilago esculenta P.Henn. IV. growth substances in the host-parasite combitation[J]. New Phytologist, 85(2): 225-233. [18] Chu C, Du Y, Yu X, et al.2020. Dynamics of antioxidant activities, metabolites, phenolic acids, flavonoids, and phenolic biosynthetic genes in germinating Chinese wild rice (Zizania latifolia)[J]. Food Chemistry, 318: 126483. [19] Darieva Z, Han N, Warwood S, et al.2012. Protein kinase C regulates late cell cycle-dependent gene expression[J]. Molecular and Cellular Biology, 32(22): 4651-4661. [20] Delley P A, Hall M N.1999. Cell wall stress depolarizes cell growth via hyperactivation of RHO1[J]. The Journal of Cell Biology, 147(1): 163-174. [21] Ge J, Zhang Z, Li Y,et al .2022. Inhibition of AoAur1 increases mycelial growth, hyphal fusion and improves physiological adaptation to high-temperature stress in Aspergillus oryzae[J]. Archives of Microbiology, 204(8): 477. [22] Gerik K J, Bhimireddy S R, Ryerse J S, et al.2008. PKC1 is essential for protection against both oxidative and nitrosative stresses, cell integrity, and normal manifestation of virulence factors in the pathogenic fungus Cryptococcus neoformans[J]. Eukaryotic Cell, 7(10): 1685-1698. [23] Guo H B, Li S M, Peng J, et al.2007. Zizania latifolia Turcz. cultivated in China[J]. Genetic Resources and Crop Evolution, 54: 1211-1217. [24] Heinisch J J.2005. Baker's yeast as a tool for the development of antifungal kinase inhibitors-targeting protein kinase C and the cell integrity pathway[J]. Biochimica et Biophysica Acta -Proteins and Proteomics, 1754(1-2): 171-182. [25] Heinisch J J, Rodicio R.2018. Protein kinase C in fungi-more than just cell wall integrity[J]. FEMS Microbiology Reviews, 42(1): 49-51. [26] Igual J C, Johnson A, Johnston L.1996. Coordinated regulation of gene expression by the cell cycle transcription factor Swi4 and the protein kinase C MAP kinase pathway for yeast cell integrity[J]. The EMBO Journal, 15(18), 5001-5013. [27] Jiménez‐Gutiérrez E, Alegría‐Carrasco E, Alonso‐Rodríguez E, et al.2020. Rewiring the yeast cell wall integrity (CWI) pathway through a synthetic positive feedback circuit unveils a novel role for the MAPKKK Ssk2 in CWI pathway activation[J]. The FEBS Journal, 287(22), 4881-4901. [28] Kamada Y, Qadota H, Python C P, et al.1996. Activation of yeast protein kinase C by Rho1 GTPase[J]. Journal of Biological Chemistry, 271(16): 9193-9196. [29] Kozubowski L, Lee S C, Heitman J.2009. Signalling pathways in the pathogenesis of Cryptococcus[J]. Cellular Microbiology, 11(3): 370-380. [30] Lafayette S L, Collins C, Zaas A K, et al.2010. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90[J]. PLOS Pathogens, 6(8): e1001069. [31] Lam W C, Gerik K J, Lodge J K.2013. Role of Cryptococcus neoformans Rho1 GTPases in the PKC1 signaling pathway in response to thermal stress[J]. Eukaryotic Cell, 12(1), 118-131. [32] Lee K S, Levin D E.1992. Dominant mutations in a gene encoding a putative protein kinase (BCK1) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homolog[J]. Molecular and Cellular Biology,12(1): 172-182. [33] Lesage G, Bussey H.2006, Cell wall assembly in Saccharomyces cerevisiae[J]. Microbiology and Molecular Biology Reviews, 70(2): 317-343. [34] Levin D E.2005. Cell wall integrity signaling in Saccharomyces cerevisiae[J]Microbiol Mol Biol Rev, 69(2):262-291. [35] Levin D E.2011. Regulation of cell wall biogenesis in Saccharomyces cerevisiae: The cell wall integrity signaling pathway[J]. Genetics, 189(4): 1145-1175. [36] Levin D E, Fields F O, Kunisawa R, et al.1990. A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle[J]. Cell, 62(2): 213-224. [37] Liu L, Veis J, Reiter W, et al.2021. Regulation of Pkc1 hyper-phosphorylation by genotoxic stress[J]. Journal of Fungi, 7(10): 874. [38] Liu X M, Xu Q L, Li Q Q, et al.2017. Physiological responses of the two blueberry cultivars to inoculation with an arbuscular mycorrhizal fungus under low-temperature stress[J]. Journal of Plant Nutrition, 40(18): 2562-2570. [39] Lu H, Shrivastava M, Whiteway M, et al.2021, Candida albicans targets that potentially synergize with fluconazole[J]. Critical Reviews in Microbiology, 47(3): 323-337. [40] Luo G, Costanzo M, Boone C, et al.2011. Nutrients and the Pkh1/2 and Pkc1 protein kinases control mRNA decay and P-body assembly in yeast[J]. Journal of Biological Chemistry, 286(11): 8759-8770. [41] Mascaraque V, Hernaez M L, Jiménez-Sánchez M, et al.2013.Phosphoproteomic analysis of protein kinase C signaling in Saccharomyces cerevisiae reveals Slt2 mitogen-activated protein kinase (MAPK)-dependent phosphorylation of eisosome core components[J]. Molecular & Cellular Proteomics, 12(3): 557-574. [42] Mathur S, Sharma M P, Jajoo A.2018. Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress[J]. Journal of Photochemistry and Photobiology B: Biology, 180: 149-154. [43] Narayanan A, Kabir M A.2021. Sorbitol and PKC1 overexpression alleviate temperature sensitivity in chaperonin mutants of Saccharomyces cerevisiae[J]. Micropublication Biology, doi: 10.17912/micropub.biology.000440. [44] Nishizuka Y.1995. Protein kinase C and lipid signaling for sustained cellular responses[J]. The FASEB Journal, 9(7): 484-496. [45] Nomura W, Futamata R, Inoue Y.2021. Role of RhoGAP Rgd1 in Pkc1 signaling-related actin repolarization under heat shock stress in Saccharomyces cerevisiae[J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 1865(5): 129853. [46] Nomura W, Inoue Y.2019. Contribution of phosphatidylserine to Rho1-and Pkc1-related repolarization of the actin cytoskeleton under stressed conditions in Saccharomyces cerevisiae[J]. Small GTPases, 10(6): 449-455. [47] Nomura W, Ito Y, Inoue Y.2017. Role of phosphatidylserine in the activation of Rho1-related Pkc1 signaling in Saccharomyces cerevisiae[J]. Cellular Signalling, 31: 146-153. [48] Paravicini G, Cooper M, Friedli L, et al.1992. The osmotic integrity of the yeast cell requires a functional PKC1 gene product[J]. Molecular and Cellular Biology, 12(11): 4896-4905. [49] Penn T J, Wood M E, Soanes D M, et al.2015. Protein kinase C is essential for viability of the rice blast fungus Magnaporthe oryzae[J]. Molecular Microbiology, 98(3): 403-419. [50] Salmerón-Santiago K G, Pardo J P, Flores-Herrera O, et al.2011. Response to osmotic stress and temperature of the fungus Ustilago maydis[J]. Archives of Microbiology, 193: 701-709. [51] Sanz A B, García R, Rodríguez-Peña J M, et al.2017. The CWI pathway: Regulation of the transcriptional adaptive response to cell wall stress in yeast[J]. Journal of Fungi, 4(1): 1. [52] Sellers-Moya Á, Nuévalos M, Molina M, et al.2021. Clotrimazole-induced oxidative stress triggers novel yeast pkc1-independent cell wall integrity mapk pathway circuitry[J]. Journal of Fungi, 7(8): 647. [53] Van Drogen F, Mishra R, Rudolf F, et al.2019. Mechanical stress impairs pheromone signaling via Pkc1-mediated regulation of the MAPK scaffold Ste5[J]. Journal of Cell Biology, 218(9): 3117-3133. [54] Xie J L, Grahl N, Sless T, et al.2016. Signaling through Lrg1, Rho1 and Pkc1 governs Candida albicans morphogenesis in response to diverse cues[J]. PLOS Genetics, 12(10): e1006405. [55] Xie M, Ma N, Bai N, et al.2022. PKC-SWI6 signaling regulates asexual development, cell wall integrity, stress response, and lifestyle transition in the nematode-trapping fungus Arthrobotrys oligospora[J]. Science China Life Sciences, 65(12): 2455-2471. [56] Xu X, Ke W, Yu X, et al.2008. A preliminary study on population genetic structure and phylogeography of the wild and cultivated Zizania latifolia (Poaceae) based on Adh1a sequences[J]. Theoretical and Applied Genetics, 116: 835-843. [57] Yang P, Yi S Y, Nian J N, et al.2021. Application of double-strand RNAs targeting chitin synthase, glucan synthase, and protein kinase reduces Fusarium graminearum spreading in wheat[J]. Frontiers in Microbiology,12: 660976. [58] Ye Z, Pan Y, Zhang Y, et al.2017. Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome[J]. DNA Research, 24(6): 635-648. [59] Yin Z, Feng W, Chen C, et al.2020. Shedding light on autophagy coordinating with cell wall integrity signaling to govern pathogenicity of Magnaporthe oryzae[J]. Autophagy, 16(5): 900-916. [60] Zanelli C F, Valentini S R.2005. Pkc1 acts through Zds1 and Gic1 to suppress growth and cell polarity defects of a yeast eIF5A mutant[J]. Genetics, 171(4): 1571-1581. [61] Zhang J Z, Chu F Q, Guo D P, et al.2012. Cytology and ultrastructure of interactions between Ustilago esculenta and Zizania latifolia[J]. Mycological Progress, 11: 499-508. [62] Zhang Y, Cao Q, Hu P, et al.2017. Investigation on the differentiation of two Ustilago esculenta strains-implications of a relationship with the host phenotypes appearing in the fields[J]. BMC Microbiology, 17(1): 1-16. [63] Zhang Y, Wu M, Ge Q, et al.2019a. Cloning and disruption of the UeArginase in Ustilago esculenta: Evidence for a role of arginine in its dimorphic transition[J]. BMC Microbiology, 19(1): 1-12. [64] Zhang Y, Yin Y, Hu P, et al.2019b. Mating-type loci of Ustilago esculenta are essential for mating and development[J]. Fungal Genetics and Biology, 125: 60-70. [65] Zhang Z J, Bian J H, Zhang Y F, et al.2022. An endoglucanase secreted by Ustilago esculenta promotes fungal proliferation[J]. Journal of Fungi, 8(10): 1050.