|
|
Identification of Cry4Ba and Cry11Aa Interacting Proteins in Aedes aegypti Midgut by GST-pull Down and Co-immunoprecipitation Combined with Mass Spectrometry |
WANG Jun-Xiang, YANG Xiao-Zhen, HE Huan, ZHANG Ling-Ling, GUAN Xiong* |
College of Plant Protection, Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agricultural and Forestry University, Fuzhou 350002, China |
|
|
Abstract Cry toxin is the main insecticidal protein produced by Bacillus thuringiensis (Bt) strain, Cry4Ba and Cry11Aa of which are highly toxic to the larvae of Aedes aegypti. Cry toxin infects the insect midgut epithelial cells by binding to the specific membrane receptors. The midgut immune factors can recognize and interact with Cry toxin, and further drive the immune system to resist Bt infection. Therefore, in order to further explore the molecular interaction mechanism of Cry4Ba and Cry11Aa toxins to Aedes aegypti, the GST-Cry4Ba and GST-Cry11Aa fusion proteins were prepared for the GST-pull down assay, and the Cry4Ba and Cry11Aa protoxins were prepared for the Co-immunoprecipitation assay. The 133 Cry4Ba-interacting proteins and 237 Cry11Aa-interacting proteins were identified from the midgut brush border membrane vesicles (BBMVs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and database searching. Bioinformatics analysis revealed that at least 16 membrane-binding or transmembrane proteins, including 5 aminopeptidases N, 1 alkaline phosphatase, 1 cadherin-like, 2 α-amylases, 1 class B scavenger receptor, 2 voltage-dependent anion-selective channel proteins and 4 actins. In addition, 7 Cry-binding proteins related to immune or maintenance of cell homeostasis were screened, including 1 peptidoglycan recognition protein (short), 1 apolipophorin, 1 hemomucin, 1 serpin and 3 heat shock proteins. These results provided the necessary reference for functional verification of Bt receptors and the immune response mechanism against Bt in Aedes aegypti.
|
Received: 31 March 2022
|
|
Corresponding Authors:
*guanxfafu@126.com
|
|
|
|
[1] 关雄, 蔡峻. 2014. 我国苏云金杆菌研究60年[J]. 微生物学通报, 41(3): 459-465. (Guan X, Cai J.2014. Bacillus thuringiensis: Sixty years of research, development and commercial applications in China[J]. Microbiology China, 41(3): 459-465.) [2] Abdullah M A F, Valaitis A P, Dean D H.2006. Identification of a Bacillus thuringiensis Cry11Ba toxin-binding aminopeptidase from the mosquito, Anopheles quadrimaculatus[J]. BMC Biochemistry, 7: 1-16. [3] Angeles C R, Luis L, Cris O, et al.2012. Comparative proteomic analysis of Aedes aegypti larval midgut after intoxication with Cry11Aa toxin from Bacillus thuringiensis[J]. PLOS ONE, 7(5): e37034. [4] Atsumi S, Mizuno E, Hara H, et al.2005. Location of the Bombyx mori aminopeptidase N type 1 binding site on Bacillus thuringiensis Cry1Aa toxin[J]. Applied and Environmental Microbiology, 71(7): 3966-3977. [5] Bayyareddy K, Andacht T M, Abdullah M A, et al.2009. Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) larvae[J]. Insect Biochemistry & Molecular Biology, 39(4): 279-286. [6] Ben-Dov E.2014. Bacillus thuringiensis subsp. israelensis and its dipteran-specific toxins[J]. Toxins (Basel), 6(4): 1222-1443. [7] Bravo A, Likitvivatanavong S, Gill S S, et al.2011. Bacillus thuringiensis: A story of a successful bioinsecticide[J]. Insect Biochemistry & Molecular Biology, 41(7): 423-431. [8] Cancino-Rodezno A, Lozano L, Oppert C, et al.2012. Comparative proteomic analysis of Aedes aegypti larval midgut after intoxication with Cry11Aa toxin from Bacillus thuringiensis[J]. PLOS ONE, 7(5): e37034. [9] Canton J, Neculai D, Grinstein S.2013. Scavenger receptors in homeostasis and immunity[J]. Nature Reviews Immunology, 13(9): 621-634. [10] Chen J, Aimanova K, Gill S S.2017. Functional characterization of Aedes aegypti alkaline phosphatase ALP1 involved in the toxicity of Cry toxins from Bacillus thuringiensis subsp. israelensis and jegathesan[J]. Peptides, 98: 78-85. [11] Chen J, Aimanova K G, Fernandez L E, et al.2009a. Aedes aegypti cadherin serves as a putative receptor of the Cry11Aa toxin from Bacillus thuringiensis subsp. israelensis[J]. Biochemical Journal, 424(2): 191-200. [12] Chen J, Aimanova K G, Pan S, et al.2009b. Identification and characterization of Aedes aegypti aminopeptidase N as a putative receptor of Bacillus thuringiensis Cry11A toxin[J]. Insect Biochemistry & Molecular Biology, 39(10): 688-696. [13] Contreras E, Rausell C, Real M.2013. Tribolium castaneum Apolipophorin-III acts as an immune response protein against Bacillus thuringiensis Cry3Ba toxic activity[J]. Journal of Invertebrate Pathology, 113(3): 209-213. [14] Da Silva I H S, Goméz I, Sánchez J, et al.2018. Identification of midgut membrane proteins from different instars of Helicoverpa armigera (Lepidoptera: Noctuidae) that bind to Cry1Ac toxin[J]. PLOS ONE, 13(12): e0207789. [15] Dechklar M, Tiewsiri K, Angsuthanasombat C, et al.2011. Functional expression in insect cells of glycosylphosphatidylinositol-linked alkaline phosphatase from Aedes aegypti larval midgut: A Bacillus thuringiensis Cry4Ba toxin receptor[J]. Insect Biochemistry & Molecular Biology, 41(3): 159-166. [16] Einarson M B, Pugacheva E N, Orlinick J R.2007. GST Pull-down[J]. CSH Protocols, 8: pdb.prot4757. [17] Fernandez L E, Aimanova K G, Gill S S, et al.2006. A GPI-anchored alkaline phosphatase is a functional midgut receptor of Cry11Aa toxin in Aedes aegypti larvae[J]. Biochemical Journal, 394(Pt 1): 77-84. [18] García-Gómez B I, Cano S N, Zagal E E, et al.2019. Insect Hsp90 chaperone assists Bacillus thuringiensis Cry toxicity by enhancing protoxin binding to the receptor and by protecting protoxin from gut protease degradation[J]. Molecular Biosystems, 10(6): e07785-19. [19] Gómez I, Rodríguez-Chamorro D E, Flores-Ramírez G, et al.2018. Spodoptera frugiperda (J. E. Smith) aminopeptidase N1 is a functional receptor of the Bacillus thuringiensis Cry1Ca toxin[J]. Applied and Environmental Microbiology, 84(17): e01089-01018. [20] Halwani A E, Niven D F, Dunphy G B.2000. Apolipophorin-III and the interactions of lipoteichoic acids with the immediate immune responses of Galleria mellonella[J]. Journal of Invertebrate Pathology, 76(4): 233-241. [21] Hua G, Masson L, Jurat-Fuentes J L, et al.2001. Binding analyses of Bacillus thuringiensis Cry delta-endotoxins using brush border membrane vesicles of Ostrinia nubilalis[J]. Applied and Environmental Microbiology, 67(2): 872-879. [22] Jiang K, Hou X Y, Tan T T, et al.2018. Scavenger receptor-C acts as a receptor for Bacillus thuringiensis vegetative insecticidal protein Vip3Aa and mediates the internalization of Vip3Aa via endocytosis[J]. PLoS Pathogens, 14(10): e1007347. [23] King A M, MacRae T H.2015. Insect heat shock proteins during stress and diapause[J]. Annual Review of Entomology, 60: 59-75. [24] Krieger I V, Revina L P, Kostina L I, et al.1999. Membrane proteins of Aedes aegypti larvae bind toxins Cry4B and Cry11A of Bacillus thuringiensis ssp. israelensis[J]. Biochemistry (Mosc), 64(10): 1163-8. [25] Lee S B, Chen J, Aimanova K G, et al.2015. Aedes cadherin mediates the in vivo toxicity of the Cry11Aa toxin to Aedes aegypti[J]. Peptides, 68: 140-147. [26] Leetachewa S, Khomkhum N, Sakdee S, et al.2018. Enhancement of insect susceptibility and larvicidal efficacy of Cry4Ba toxin by calcofluor[J]. Parasit Vectors, 11(1): 515. [27] Leta S, Beyene T J, De Clercq E M, et al.2018. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus[J]. International Journal of Infectious Diseases, 67: 25-35. [28] Li S, Xu X, Shakeel M, et al.2018. Bacillus thuringiensis suppresses the humoral immune system to overcome defense mechanism of Plutella xylostella[J]. Frontiers in Physiology, 9: 1478-1478. [29] Li Y P, Xiao M, Li L, et al.2015. Molecular characterization of a peptidoglycan recognition protein from the cotton bollworm, Helicoverpa armigera and its role in the prophenoloxidase activation pathway[J]. Molecular Immunology, 65(1): 123-132. [30] Lu Y, Su F, Li Q, et al.2020. Pattern recognition receptors in Drosophila immune responses[J]. Developmental and Comparative Immunology, 102: 103468. [31] Onofre J, Gaytán M O, Peña-Cardeña A, et al.2017. Identification of aminopeptidase-N2 as a Cry2Ab binding protein in Manduca sexta[J]. Peptides, 98: 93-98. [32] Ping W, Granados R R.2000. Calcofluor disrupts the midgut defense system in insects[J]. Insect Biochemistry and Molecular Biology, 30(2): 135-143. [33] Rees J S, Jarrett P, Ellar D J.2009. Peritrophic membrane contribution to Bt Cry d-endotoxin susceptibility in lepidoptera and the effect of calcofluor[J]. Journal of Invertebrate Pathology, 100(3):139-46. [34] Shakeel M, Xu X, De Mandal S, et al.2019. Role of serine protease inhibitors in insect-host-pathogen interactions[J]. Archives of Insect Biochemistry and Physiology, 102(3): e21556. [35] Tamez-Guerra P, Valadez-Lira J A, Alcocer-González J M, et al.2008. Detection of genes encoding antimicrobial peptides in Mexican strains of Trichoplusia ni (Hübner) exposed to Bacillus thuringiensis[J]. Journal of Invertebrate Pathology, 98(2): 218-227. [36] Thammasittirong A, Thammasittirong S N, Imtong C, et al.2021. Bacillus thuringiensis Cry4Ba insecticidal toxinexploits Leu(615) in its C-terminal domain to interact with a target receptor-Aedes aegypti membrane-bound alkaline phosphatase[J]. Toxins (Basel), 13(8): 553. [37] Valaitis A P, Podgwaite J D.2013. Bacillus thuringiensis Cry1A toxin-binding glycoconjugates present on the brush border membrane and in the peritrophic membrane of the douglas-fir tussock moth are peritrophins[J]. Journal of Invertebrate Pathology, 112(1): 1-8. [38] Vega-Cabrera A, Cancino-Rodezno A, Porta H, et al.2014. Aedes aegypti Mos20 cells internalizes cry toxins by endocytosis, and actin has a role in the defense against Cry11Aa toxin[J]. Toxins, 6(2): 464-487. [39] Wang J, Lin G, Batool K, et al.2018. Alimentary tract transcriptome analysis of the Tea Geometrid, Ectropis oblique (Lepidoptera: Geometridae)[J]. Journal of Economic Entomology, 111(3): 1411-1419. [40] Wang P, Granados R R.2001. Molecular structure of the peritrophic membrane (PM): Identification of potential PM target sites for insect control[J]. Archives of Insect Biochemistry and Physiology, 47(2): 110-8. [41] Yoshida H, Kinoshita K, Ashida M.1996. Purification of a peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori[J]. Journal of Biological Chemistry, 271(23): 13854-60. [42] Zhang Q, Hua G, Bayyareddy K, et al.2013. Analyses of α-amylase and α-glucosidase in the malaria vector mosquito, Anopheles gambiae, as receptors of Cry11Ba toxin of Bacillus thuringiensis subsp. jegathesan[J]. Insect Biochemistry & Molecular Biology, 43(10): 907-915. [43] Zhang R, Hua G, Andacht T M, et al.2008. A 106-kDa aminopeptidase is a putative receptor for Bacillus thuringiensis Cry11Ba toxin in the mosquito Anopheles gambiae[J]. Biochemistry, 47(43): 11263-11272. [44] Zhao X, Zhang J, Yang J, et al.2020. Mucin family genes are essential for the growth and development of the Migratory locust, Locusta migratoria[J]. Insect Biochemistry and Molecular Biology, 123: 103404. |
|
|
|