Identification of WOX Family Genes in Lagerstroemia indica and Their Effects on Callus Induction
KANG Jia-Yin, CHI Xiu-Feng, SHEN Ping, WANG Xin, WAN Zhi-Ting, CAI Ming, CHENG Tang-Ren, WANG Jia, ZHANG Qi-Xiang, PAN Hui-Tang*
School of Landscape Architecture/Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding/National Engineering Research Center for Floriculture/Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing 100083, China
Abstract:As plant specific transcription factors, WOX gene family plays an important role in regulating plant growth and development, tissue and organ genesis and formation. This study used bioinformatics methods to identify 15 members of WOX gene family in the whole genome of Lagerstroemia indica, named LfiWOX1~LfiWOX15, which were distributed on 14 chromosomes. There were large differences in molecular weight and isoelectric point between proteins. All subcellular predictions were located in the nucleus. Systemic evolution analysis showed that genes were classified into 3 categories, and 5 orthologous WOX members closely related to Arabidopsis thaliana and rice (Oryza sativa) WOX genes. Additionally, some WOX genes with specific motifs in L. indica were classified into the same branch on the evolutionary tree, and all family members contain motif 1, motif 2, and motif 5. The WOX family genes contain 9 cis-regulatory elements related to plant growth and development, hormone regulation, and stress, with different members containing different elements. qRT-PCR analysis showed that the expression levels of LfiWOX12, LfiWOX13 and LfiWOX15 in callus tissue increased by 1.5~1.9 times compared to leaves, while the expression levels of other genes in callus tissue decreased by 0.1~90% compared to leaves. It was speculated that LfiWOX12, LfiWOX13 and LfiWOX15 were related to callus formation. The results provide basic data for further studying the regulation of WOX gene on callus induction and theoretical reference for the establishment of efficient regeneration and genetic transformation system in L. indica.
康佳音, 池秀凤, 申萍, 王鑫, 万志庭, 蔡明, 程堂仁, 王佳, 张启翔, 潘会堂. 紫薇WOX家族基因鉴定及其对愈伤诱导的影响[J]. 农业生物技术学报, 2024, 32(10): 2255-2264.
KANG Jia-Yin, CHI Xiu-Feng, SHEN Ping, WANG Xin, WAN Zhi-Ting, CAI Ming, CHENG Tang-Ren, WANG Jia, ZHANG Qi-Xiang, PAN Hui-Tang. Identification of WOX Family Genes in Lagerstroemia indica and Their Effects on Callus Induction. 农业生物技术学报, 2024, 32(10): 2255-2264.
[1] 蔡明, 王晓玉, 张启翔, 等. 2010. 紫薇品种与尾叶紫薇种间杂交亲和性研究[J]. 西北植物学报, 30(4): 697-701. (Cai M, Wang X Y, Zhang Q X, et al.2010. Compatibility of interspecific crosses between Lagerstroemia indica cultivars and Lagerstroemia caudata[J]. Acta Botanica Boreali-Occidentalia Sinica, 30(4): 697-701.) [2] 陈玲, 王旺田, 蒲媛媛, 等. 2023. 甘蓝型油菜WOX基因家族的鉴定与表达分析[J]. 西北农业学报, 32(08): 1173-1186. (Chen L, Wang W T, Pu Y Y, et al.2023. Identification and expression analysis of WOX gene family in Brassica napus[J]. Acta Botanica Boreali-Occidentalia Sinica, 32(08): 1173-1186.) [3] 侯思宇, 王欣芳, 杜伟, 等. 2021. 苦荞WOX家族全基因组鉴定及响应愈伤诱导率表达分析[J].中国农业科学, 54(17): 3573-3586. (Hou S Y, Wang X F, Du W, et al.2021. Genome-wide identification of WOX family and expression analysis of callus induction rate in tartary buckwheat[J]. Scientia Agricultura Sinica, 54(17): 3573-3586.) [4] 林启芳, 刘婷婷, 刘洁茹, 等. 2021. 紫薇属与黄薇属植物花瓣类黄酮组成及含量分析[J]. 园艺学报, 48(10): 1956-1968. (Lin Q F, Liu T T, Liu J R, et al.2021. Flavonoids composition and content in petals of Lagerstroemia and Heimia species and cultivars[J]. Acta Horticulturae Sinica, 48(10): 1956-1968.) [5] 刘婷婷. 2020. 紫薇属与黄薇属属间杂交亲和性研究[D]. 硕士学位论文, 北京林业大学, 导师: 潘会堂. pp. 46-73. (Liu T T.2020. Wide cross compatibility between Lagerstroemia and Heimia[D]. Thesis for M.S., Beijing Forestry University, Supervisor: Pan H T. pp. 46-73.) [6] 马青龄, 梁贝贝, 杨莉, 等. 2022. 枳WOX基因家族全基因组鉴定及表达分析[J]. 果树学报, 39(05): 712-729. (Ma Q L, Liang B B, Yang L, et al.2022. Genome-wide identification and expression analysis of WOX family in Trifoliate orange[J]. Journal of Fruit Science, 39(05): 712-729.) [7] 聂硕, 张林, 王峰, 等. 2016. 紫薇种子辐射变异和抗性初步研究[J]. 农学学报, 6(5): 47-52. (Nie S, Zhang L, Wang F, et al.2016. Variation and resistance of Lagerstroemia indica seed under radiation[J]. Journal of Agriculture, 6(5): 47-52.) [8] 秦波, 冯露, 王佳, 等. 2020. 紫薇新品种'玲珑'[J]. 园艺学报, 47(S2): 3114-3115. (Qin B, Feng L, Wang J, et al.2020. A new cultivar of crape myrtle 'Linglong'[J]. Acta Horticulturae Sinica, 47(S2): 3114-3115.) [9] 童俊, 叶要妹, 冯彪, 等. 2009. 秋水仙素诱导三种紫薇多倍体的研究[J]. 园艺学报, 36(1): 127-132. (Tong J, Ye Y M, Feng B, et al.2009. Colchicines induced polyploid plants and their identification in three species of Lagerstroemia indica[J]. Acta Horticulturae Sinica, 36(1): 127-132.) [10] 王金凤, 柳新红, 陈卓梅. 2013. 紫薇属植物育种研究进展[J]. 园艺学报, 40(9): 1795-1804. (Wang J F, Liu X H, Chen Z M.2013. Research progress in breeding of Lagerstroemia plant[J]. Acta Horticulturae Sinica, 40(9): 1795-1804.) [11] 吴际洋, 焦垚, 叶远俊, 等. 2018. 大花紫薇与紫薇杂交F1群体表型评价及分子标记连锁分析[J]. 园艺学报, 45(11): 2153-2163. (Wu J Y, Jiao Y, Ye Y J, et al.2018. Phenotypic assessment and linkage analysis of main ornamental traits of Lagerstroemia speciosa×L. indica to SSR markers[J]. Acta Horticulturae Sinica, 45(11): 2153-2163.) [12] 张琪, 张爱霞, 贾俊婷, 等. 2022. 水稻WOX家族基因鉴定及其种子在逆境萌发中的表达分析[J]. 南方农业学报, 53(7): 1809-1820. (Zhang Q, Zhang A X, Jia J T, et al.2022. Rice WOX family gene identification and expression analysis of seeds germinated under stress[J]. Journal of Southern Agriculture, 53(7): 1809-1820.) [13] 张启翔. 1991. 紫薇品种分类及其在园林中的应用(英文)[J]. 北京林业大学学报, 13(4): 57-66. (Zhang Q X.1991. Studies on cultivars of crape-myrtle (Lagerstroemia indica) and their uses in urban greening[J]. Journal of Beijing Forestry University, 13(4): 57-66.) [14] Chatfield S P, Capron R, Severino A, et al.2013. Incipient stem cell niche conversion in tissue culture: Using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems[J]. The Plant Journal, 73(5): 798-813. [15] Cheng S F, Huang Y L, Zhu N, et al.2014. The rice WUSCHEL-related homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response[J]. Gene, 549(2): 266-274. [16] Chi X F, Zhang Y, Shen P, et al.2023. LfiTCP15;2 regulates plant height of Lagerstroemia indica by influencing the growth of stem cells[J]. Scientia Horticulturae, 321: 112306. [17] Feng L, Liang X H, Zhou Y, et al.2020. Functional analysis of Aux/IAAs and SAURs on shoot growth of Lagerstroemia indica through virus-induced gene silencing (VIGS)[J]. Forests, 11(12): 1288. [18] Gehring W J, Müller M, Affolter M, et al.1990. The structure of the homeodomain and its functional implications[J]. Trends in Genetics, 6(10): 323-329. [19] Graaff E, Laux T, Rensing S A.2009. The WUS homeobox-containing (WOX) protein family[J]. Genome Biology, 10(12): 248. [20] Haecker A, Gross-Hardt R, Geiges B, et al.2004. Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana[J]. Development, 131(3): 657-668. [21] Hendelman A, Zebell S, Rodriguez-Leal D, et al.2021. Conserved pleiotropy of an ancient plant homeobox gene uncovered by cis-regulatory dissection[J]. Cell, 184(7): 1724-1739.e16. [22] Jha P, Ochatt S J, Kumar V.2020. WUSCHEL: A master regulator in plant growth signaling[J]. Plant Cell Reports, 39(4): 431-444. [23] Ji J, Shimizu R, Sinha N, et al.2010. Analyses of WOX4 transgenics provide further evidence for the evolution of the WOX gene family during the regulation of diverse stem cell functions[J]. Plant Signaling & Behavior, 5(7): 916-920. [24] Jing W M, Juan Z C, Lin Y S, et al.2017. Type-B Arabidopsis response regulators specify the shoot stem cell niche by dual regulation of WUSCHEL[J]. The Plant Cell, 29(6): 1357-1372. [25] Ju Y Q, Hu X, Jiao Y, et al.2019. Fertility analyses of interspecific hybrids between Lagerstroemia indica and L. speciosa[J]. Czech Journal of Genetics and Plant Breeding, 55: 28-34. [26] Katsir L, Davies A K, Bergmann C D, et al.2011. Peptide signaling in plant development[J]. Current Biology, 21(9): R356-R364. [27] Li X X, Hamyat M, Liu C, et al.2018. Identification and characterization of the WOX family genes in five Solanaceae species reveal their conserved roles in peptide signaling[J]. Genes, 9(5): 260. [28] Li Z, Liu D, Xia Y, et al.2020. Identification of the WUSCHEL-related homeobox (WOX) gene family, and interaction and functional analysis of TaWOX9 and TaWUS in wheat[J]. International Journal of Molecular Sciences, 21(5): 1581. [29] Liu J, Hu X M, Qin P, et al.2018. The WOX11-LBD16 pathway promotes pluripotency acquisition in callus cells during de novo shoot regeneration in tissue culture[J]. Plant Cell Physiology, 59(4): 739-748. [30] Lu Y, Liu Z Y, Lyu M, et al.2019. Characterization of JsWOX1 and JsWOX4 during callus and root induction in the shrub species Jasminum sambac[J]. Plants, 8(4): 79. [31] Mayer F K, Schoof H, Haecker A, et al.1998. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem[J]. Cell, 95(6): 805-815. [32] Mukherjee K, Brocchieri L, Bürglin T R.2009. A comprehensive classification and evolutionary analysis of plant homeobox genes[J]. Molecular Biology and Evolution, 26(12): 2775-2794. [33] Nishihara M, Higuchi A, Watanabe A, et al.2018. Application of the CRISPR/Cas9 system for modification of flower color in Torenia fournieri[J]. BMC Plant Biology, 18(1): 331. [34] Noda N, Aida R, Kishimoto S, et al.2013. Genetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins[J]. Plant Cell Physiology, 54(10): 1684-1695. [35] Noda N, Yoshioka S, Kishimoto S, et al.2017. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism[J]. Science Advances, 3(7): e1602785. [36] Stahl Y, Wink R H, Ingram G C, et al.2009. A signaling module controlling the stem cell niche in Arabidopsis root meristems[J]. Acta Agronomica Hungarica, 19(11): 909-914. [37] Tvorogova V E, Krasnoperova E Y, Potsenkovskaia E A, et al.2021. What does the WOX say? Review of regulators, targets, partners[J]. Molecular Biology, 55(3): 362-391. [38] Wang L Q, Wen S S, Wang R, et al.2021. PagWOX11/12a activates PagCYP736A12 gene that facilitates salt tolerance in poplar[J]. Plant Biotechnology Journal, 19(11): 2249-2260. [39] Yasui Y, Ohmori Y, Takebayashi Y, et al.2018. WUSCHEL-RELATED HOMEOBOX4 acts as a key regulator in early leaf development in rice[J]. PLOS Genetics, 14(4): e1007365. [40] Ye Y J, Feng L, Liang X H, et al.2019. Characterization, validation, and cross-species transferability of newly developed EST-SSR markers and their application for genetic evaluation in crape myrtle (Lagerstroemia spp)[J]. Molecular Breeding, 39(2): 26. [41] Zhang T Q, Heng L, Zhou C M, et al.2017. A two-step model for de novo activation of WUSCHEL during plant shoot regeneration[J]. The Plant Cell, 29(5): 1073-1087. [42] Zhang X, Zong J, Liu J H, et al.2010. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar[J]. Journal of Integrative Plant Biology, 52(11): 1016-1026. [43] Zhao Y, Hu Y F, Dai M Q, et al.2009. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice[J]. Plant Cell, 21(3): 736-748. [44] Zhou Y, Ju Y Q, Chi X F, et al.2023. Three CYCDs positively regulate plant height of crape myrtle by increasing cell division[J]. Scientia Horticulturae, 315: 111954. [45] Zhou Y, Zheng T C, Cai M, et al.2023. Genome assembly and resequencing analyses provide new insights into the evolution and ornamental traits of crape myrtle[J]. Horticulture Research, 10(9): uhad146. [46] Zhu J H, Shi H Z, Lee B H, et al.2004. An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway[J]. Proceedings of the National Academy of Sciences of the USA, 101(26): 9873-9878.