Abstract:With the advent of CRISPR/Cas system, plant genome editing has entered a new era of precise editing for any genes of interest. The CRISPR/Cas toolkits have been successfully tested on a wide variety of fruit tree species. According to the statistics of breeding research, researchers have edited about 45 fruit tree genes by CRISPR/Cas genome editing technology, which were mainly used to enhance disease resistance, prolong shelf-time, early flowering, tree dwarf and increase shoot branching. However, the fruit tree genome editing still relies mostly on Cas9-based indel mutation and Agrobacterium-mediated stable transformation. Transient transformation for transgene-free genome editing is preferred, but it typically has very low efficiency in fruit trees, substantially limiting its potential utility. In this review, the CRISPR/Cas system and its related technologies were summarized, and then we introduced the delivery methods of the CRISPR /Cas expression vector into plant genome and the current status of fruit tree genome editing practices using the CRISPR/Cas system, and discussed the problems impeding the efficient application of the CRISPR/Cas toolkits for fruit trees genome editing, as well as future prospects. This review provides reference for research on gene function and molecular breeding of fruit trees.
倪海枝, 王引, 王平, 程玉芳, 颜帮国, 陈方永. CRISPR/Cas 基因组编辑技术在果树育种中的应用[J]. 农业生物技术学报, 2023, 31(8): 1730-1746.
NI Hai-Zhi, WANG Yin, WANG Ping, CHENG Yu-Fang, YAN Bang-Guo, CHEN Fang-Yong. Application of CRISPR/Cas Genome Editing Technology in Fruit Trees Breeding. 农业生物技术学报, 2023, 31(8): 1730-1746.
[1] 郭晔, 万东艳, 柴壮壮, 等. 2019. 利用 CRISPR/Cas9 敲除葡萄 VviPDS1 基因的研究[J]. 园艺学报, 46(04): 623-634. (Gu Y, Wang D Y, Chai Z Z, et al. 2019. Knock-out anal-ysis of VviPDS1 gene using CRISPR/Cas9 in grapevine[J]. Acta Horticulturae Sinica, 46(04): 623-634.) [2] 胡春华, 邓贵明, 孙晓玄, 等. 2017. 香蕉 CRISPR/Cas9 基因编辑技术体系的建立[J]. 中国农业科学, 50(07): 1294-1301. (Hu C H, Deng G M, Sun X X, et al. 2017. Estab-lishment of an efficient CRISPR/Cas9-mediated gene editing system in banana[J]. Scientia Agricultura Sinica,50(07): 1294-1301.) [3] 倪海枝, 王引, 颜帮国, 等. 2023. 果树基因组辅助育种技术研究现状与展望[J]. 分子植物育种, 21(05): 1535-1550. (Ni H Z, Wang Y, Yan B G, et al. 2023. Research status and prospects of genomics-assisted breeding technology in fruit trees[J]. Molecular Plant Breeding, 21(05): 1535-1550.) [4] 杨锋, 杨钦淞, 高雨豪, 等. 2021. 梨愈伤组织双靶点 CRIS-PR/Cas9 基因编辑系统的建立[J]. 园艺学报, 48(05):873-882. (Yang F, Yang Q S,Gao Y H, et al. 2021. Estab-lishment of dual-cut CRISPR/Cas9 gene editing system in pear calli[J]. Acta Horticulturae Sinica, 48(05): 873-882.) [5] 杨禄山, 郭晔, 胡洋, 等. 2020. 利用 CRISPR/Cas9 系统敲除葡萄中VviEDR2 提高对白粉病的抗性[J]. 园艺学报,47(04): 623-634. (Yang L S, Guo Y, Hu Y, et al. 2020. CRISPR/Cas9-mediated mutagenesis of VviEDR2 re-sults in enhanced resistance to powdery mildew in grapevine(Vitis vinifera)[J]. Acta Horticulturae Sinica, 47(04): 623-634.) [6] 邹修平, 范迪, 彭爱红, 等. 2019.CRISPR/Cas9 介导柑橘 Cs- LOB1 基因启动子的多位点编辑[J]. 园艺学报, 46(02):337-344. (Zou X P, Fan D, Peng A H, et al. 2019. CRIS-PR/Cas9-mediated editing of multiple sites in the citrus CsLOB1 promoter[J]. Acta Horticulturae Sinica, 46(02):337-344.) [7] Abdelrahman M, Wei Z, Rohila J S, et al. 2021. Multiplex ge-nome-editing technologies for revolutionizing plant biol-ogy and crop improvement[J]. Frontiers in Plant Sci-ence, 12: 721203. [8] Alquézar B, Bennici S, Carmona L, et al. 2022. Generation of transfer-DNA-free base-edited citrus plants[J]. Frontiers in Plant Science, 13: 835282. [9] Alvarez D, Cerda-Bennasser P, Stowe E, et al. 2021. Fruit crops in the era of genome editing: closing the regulato-ry gap[J]. Plant Cell Reports, 40(6): 915-930. [10] Anjanappa R B, Gruissem W.2021. Current progress and challenges in crop genetic transformation[J]. Journal of Plant Physiology, 261: 153411. [11] Atkins P A, Voytas D F.2020. Overcoming bottlenecks in plant gene editing[J]. Current Opinion in Plant Biology, 54: 79-84. [12] Awasthi P, Khan S, Lakhani H, et al. 2022. Transgene-free ge-nome editing supports the role of carotenoid cleavage di-oxygenase 4 as a negative regulator of β-carotene in ba-nana[J]. Journal of Experimental Botany, 73(11): 3401-3416. [13] Calvache C, Vazquez-Vilar M, Selma S, et al. 2022. Strong and tunable anti-CRISPR/Cas activities in plants[J]. Plant Biotechnology Journal, 20(2): 399-408. [14] Chang L, Wu S, Tian L.2019. Effective genome editing and identification of a regiospecific gallic acid 4-O-glycosyl-transferase in pomegranate (Punica granatum L.)[J].Horticulture Research, 6(1): 1-15. [15] Charrier A, Vergne E, Dousset N, et al. 2019. Efficient target-ed mutagenesis in apple and first time edition of pear us-ing the CRISPR-Cas9 system[J]. Frontiers in Plant Sci-ence, 10: 40. [16] Dalla Costa L, Piazza S, Pompili V, et al. 2020. Strategies to produce T-DNA free CRISPRed fruit trees via Agrobacte- rium tumefaciens stable gene transfer[J]. Scientific Re-ports, 10(1): 20155. [17] De Mori G, Zaina G, Franco-Orozco B, et al. 2021. Targeted mutagenesis of the female-suppressor SyGI gene in tetra-ploid kiwifruit by CRISPR/CAS9[J]. Plants, 10(1): 62. [18] Debernardi J M, Tricoli D M, Ercoli M F, et al. 2020. A GRF-GIF chimeric protein improves the regeneration efficien-cy of transgenic plants[J]. Nature Biotechnology, 38(11): 1274-1279. [19] Demirer G S, Silva T N, Jackson C T, et al. 2021. Nanotech-nology to advance CRISPR-Cas genetic engineering of plants[J]. Nature Nanotechnology, 16(3): 243-250. [20] Dutt M, Mou Z, Zhang X, et al. 2020. Efficient CRISPR/Cas9 genome editing with Citrus embryogenic cell cultures[J]. BMC Biotechnology, 20(1): 58. [21] Ellison E E, Nagalakshmi U, Gamo M E, et al. 2020. Multi-plexed heritable gene editing using RNA viruses and mobile single guide RNAs[J]. Nature Plants, 6(6): 620-624. [22] Fedorina J, Tikhonova N, Ukhatova Y, et al. 2022. Grapevine gene systems for resistance to gray mold botrytis cine-rea and powdery mildew erysiphe necator[J]. Agrono-my, 12(2): 499. [23] Feng Q, Xiao L, He Y, et al. 2021. Highly efficient, genotype- independent transformation and gene editing in water-melon (Citrullus lanatus) using a chimeric ClGRF4-GIF1 gene[J]. Journal of Integrative Plant Biology, 63(12):2038-2042. [24] Fister A S, Landherr L, Maximova S N, et al. 2018. Transient expression of CRISPR/Cas9 machinery targeting Tc- NPR3 enhances defense response in Theobroma cacao [J]. Frontiers in Plant Science, 9: 268. [25] Gardiner J, Ghoshal B, Wang M, et al. 2022. CRISPR-Cas- mediated transcriptional control and epi-mutagenesis[J]. Plant Physiology, 188(4): 1811-1824. [26] Ghogare R, Ludwig Y, Bueno G M, et al. 2021. Genome edit-ing reagent delivery in plants[J]. Transgenic Research,30(4): 321-335. [27] Han X, Yang Y, Han X, et al. 2022. CRISPR Cas9-and Cas12a-mediated gusA editing in transgenic blueberry[J]. Plant Cell, Tissue and Organ Culture, 148(2): 217-229. [28] Hassan M M, Zhang Y, Yuan G, et al. 2021. Construct design for CRISPR/Cas-based genome editing in plants[J]. Trends in Plant Science, 26(11): 1133-1152. [29] He J, Bao S, Deng J, et al. 2022a. A chromosome-level ge-nome assembly of Artocarpus nanchuanensis (Moraceae), an extremely endangered fruit tree[J]. GigaScience, 11: giac042. [30] He Y, Mudgett M, Zhao Y.2022b. Advances in gene editing without residual transgenes in plants[J]. Plant Physiolo-gy, 188(4): 1757-1768. [31] Hu C, Sheng O, Deng G, et al. 2021. CRISPR/Cas9-mediated genome editing of MaACO1 (aminocyclopropane-1-car-boxylate oxidase 1) promotes the shelf life of banana fruit[J]. Plant Biotechnology Journal, 19(4): 654-656. [32] Hua K, Han P, Zhu J K.2022. Improvement of base editors and prime editors advances precision genome engineer-ing in plants[J]. Plant Physiology, 188(4): 1795-1810. [33] Huang X, Wang Y and Wang N.2022a. Highly efficient gener-ation of canker-resistant sweet orange enabled by an im-proved CRISPR/Cas9 system[J]. Frontiers in Plant Sci-ence, 12: 769907. [34] Huang X, Wang Y, Wang N.2022b. Base editors for citrus gene editing[J]. Frontiers in Genome Editing, 4: 852867 [35] Huang X, Wang Y, Xu J, et al. 2020. Development of multi-plex genome editing toolkits for citrus with high effica-cy in biallelic and homozygous mutations[J]. Plant Mo-lecular Biology, 104(3): 297-307. [36] Ji X, Yang B, Wang D.2020. Achieving plant genome editing while bypassing tissue culture[J]. Trends in Plant Sci-ence, 25(5): 427-429. [37] Jia H, Omar A A, Orbović V, et al. 2022a. Biallelic editing of the LOB1 promoter via CRISPR/Cas9 creates canker-re-sistant‘Duncan’grapefruit[J]. Phytopathology, 112(2):308-314. [38] Jia H, Orbovic V, Jones J B, et al. 2016. Modification of the PthA4 effector binding elements in Type I CsLOB1 pro-moter using Cas9/sgRNA to produce transgenic Duncan grapefruit alleviating XccΔpthA4: dCsLOB 1.3 infection[J]. Plant Biotechnology Journal, 14(5): 1291-1301. [39] Jia H, Orbović V, Wang N.2019. CRISPR-LbCas12a-mediat-ed modification of citrus[J]. Plant Biotechnology Jour-nal, 17(10): 1928-1937. [40] Jia H, Wang N.2020. Generation of homozygous canker-resis-tant citrus in the T0 generation using CRISPR-SpCas9p[J]. Plant Biotechnology Journal, 18(10): 1990-1992. [41] Jia H, Wang N.2014. Targeted genome editing of sweet or-ange using Cas9/sgRNA[J]. PLOS ONE, 9(4): e93806. [42] Jia H, Wang Y, Su H, et al. 2022b. LbCas12a-D156R efficient-ly edits LOB1 effector binding elements to generate can-ker-resistant citrus plants[J]. Cells, 11(3): 315. [43] Jia H, Xu J, Orbović V, et al. 2017a. Editing citrus genome via SaCas9/sgRNA system[J]. Frontiers in Plant Science, 8:2135. [44] Jia H, Zhang Y, Orbović V, et al. 2017b. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker[J]. Plant biotechnology jour-nal, 15(7): 817-823. [45] Jiao B, Hao X, Liu Z, et al. 2022. Engineering CRISPR im-mune systems conferring GLRaV-3 resistance in grape-vine[J]. Horticulture Research, 9: uhab023. [46] Jiao J, Kong K, Han J, et al. 2021. Field detection of multiple RNA viruses/viroids in apple using a CRISPR/Cas12a- based visual assay[J]. Plant Biotechnology Journal, 19(2): 394-405. [47] Kaur N, Alok A, Kaur N, et al. 2018. CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demon-strates precise manipulation in banana cv. Rasthali ge-nome[J]. Functional & Integrative Genomics, 18(1): 89-99. [48] Kaur N, Alok A, Kumar P, et al. 2020. CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabol-ic flux for β -carotene biosynthesis in banana fruit[J]. Metabolic Engineering, 59: 76-86. [49] Khan Z, Khan S H, Mubarik M S, et al. 2017. Use of TALEs and TALEN technology for genetic improvement of plants[J]. Plant Molecular Biology Reporter, 35(1): 1-19. [50] Kim J H.2019. Biological roles and an evolutionary sketch of the GRF-GIF transcriptional complex in plants[J]. BMB Reports, 52(4): 227-238. [51] Koonin E V, Makarova K S.2022. Evolutionary plasticity and functional versatility of CRISPR systems[J]. PLoS Biol-ogy, 20(1): e3001481. [52] LeBlanc C, Zhang F, Mendez J, et al. 2018. Increased efficien-cy of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress[J]. The Plant Journal, 93(2): 377-386. [53] Li M Y, Jiao Y T, Wang Y T, et al. 2020b. CRISPR/Cas9-medi-ated VvPR4b editing decreases downy mildew resistance in grapevine (Vitis vinifera L.)[J]. Horticulture Re-search, 7: 149. [54] Li T, Hu J, Sun Y, et al. 2021. Highly efficient heritable ge-nome editing in wheat using an RNA virus and bypass-ing tissue culture[J]. Molecular Plant, 14(11): 1787-1798. [55] Liu X, Wu R, Bulley S M, et al. 2022. Kiwifruit MYBS1-like and GBF3 transcription factors influence l-ascorbic acid biosynthesis by activating transcription of GDP-L-galac-tose phosphorylase 3[J]. New Phytologist, 234(5): 1782-1800. [56] Lowe K, Wu E, Wang N, et al. 2016. Morphogenic regulators Baby boom and Wuschel improve monocot transforma-tion[J]. The Plant Cell, 28(9): 1998-2015. [57] Luo G, Palmgren M.2021. GRF-GIF chimeras boost plant re-generation[J]. Trends in Plant Science, 26(3): 201-204. Ma X, Zhang X, Liu H, et al. 2020. Highly efficient DNA-free plant genome editing using virally delivered CRIS-PR-Cas9[J]. Nature Plants, 6(7): 773-779. [58] Maher M F, Nasti R A, Vollbrecht M, et al. 2020. Plant gene editing through de novo induction of meristems[J]. Na-ture Biotechnology, 38(1): 84-89. [59] Makarova K S, Wolf Y I, Iranzo J, et al. 2020. Evolutionary classification of CRISPR-Cas systems: A burst of class 2 and derived variants[J]. Nature Reviews Microbiolo-gy, 18(2): 67-83. [60] Malabarba J, Chevreau E, Dousset N, et al. 2021. New strate-gies to overcome present CRISPR/Cas9 limitations in apple and pear: Efficient dechimerization and base edit-ing[J]. International Journal of Molecular Sciences, 22(1): 319. [61] Malnoy M, Viola R, Jung M H, et al. 2016. DNA-free geneti-cally edited grapevine and apple protoplast using CRIS-PR/Cas9 ribonucleoproteins[J]. Frontiers in Plant Sci-ence, 7: 1904. [62] Maren N A, Duan H, Da K, et al. 2022. Genotype-indepen-dent plant transformation[J]. Horticulture Research, 9: uhac047. [63] Naim F, Dugdale B, Kleidon J, et al. 2018. Gene editing the phytoene desaturase alleles of Cavendish banana using CRISPR/Cas9[J]. Transgenic Research, 27(5): 451-460. Najera V A, Twyman R M, Christou P, et al. 2019. Applica-tions of multiplex genome editing in higher plants[J]. Current Opinion in Biotechnology, 59: 93-102. [64] Nakajima I, Ban Y, Azuma A, et al. 2017. CRISPR/Cas9-me-diated targeted mutagenesis in grape[J]. PLoS One, 12(5): e0177966. [65] Nishitani C, Hirai N, Komori S, et al. 2016. Efficient genome editing in apple using a CRISPR/Cas9 system[J]. Scien-tific Reports, 6: 31481. [66] Ntui V O, Tripathi J N, Tripathi L.2020. Robust CRISPR/ Cas9 mediated genome editing tool for banana and plan-tain (Musa spp.)[J]. Current Plant Biology, 21: 100128. [67] Omori M, Yamane H, Osakabe K, et al. 2021. Targeted muta-genesis of CENTRORADIALIS using CRISPR/Cas9 system through the improvement of genetic transforma-tion efficiency of tetraploid highbush blueberry[J]. The Journal of Horticultural Science and Biotechnology, 96(2): 153-161. [68] Osakabe Y, Liang Z, Ren C, et al. 2018. CRISPR-Cas9-medi-ated genome editing in apple and grapevine[J]. Nature Protocols, 13(12): 2844-2863. [69] Pan C, Sretenovic S, Qi Y.2021a. CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants[J]. Current Opinion in Plant Biology, 60: 101980. [70] Pan W, Cheng Z, Han Z, et al. 2022. Efficient genetic transfor-mation and CRISPR/Cas9-mediated genome editing of watermelon assisted by genes encoding developmental regulators[J]. Journal of Zhejiang University-SCIENCE B, 23(4): 339-344. [71] Pang H, Yan Q, Zhao S, et al. 2019. Knockout of the S-acyl-transferase gene, PbPAT14, confers the dwarf yellowing phenotype in first generation pear by ABA accumulation[J]. International Journal of Molecular Sciences, 20(24):6347. [72] Pavese V, Moglia A, Abbà S, et al. 2022. First report on ge-nome editing via ribonucleoprotein (RNP) in Castanea sativa Mill[J]. International Journal of Molecular Sci-ences, 23: 5762. [73] Peer R, Rivlin G, Golobovitch S, et al. 2015. Targeted muta-genesis using zinc-finger nucleases in perennial fruit trees[J]. Planta, 241(4): 941-951. [74] Peng A, Chen S, Lei T, et al. 2017. Engineering canker-resis-tant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus[J]. Plant Biotechnology Journal, 15(12): 1509-1519. [75] Pompili V, Dalla Costa L, Piazza S, et al. 2020. Reduced fire blight susceptibility in apple cultivars using a high-effi-ciency CRISPR/Cas9-FLP/FRT-based gene editing sys-tem[J]. Plant Biotechnology Journal, 18(3): 845-858. [76] Qiu F, Xing S, Xue C, et al. 2021. Transient expression of a TaGRF4-TaGIF1 complex stimulates wheat regenera-tion and improves genome editing[J]. Science China Life Sciences, 65(4): 731-738. [77] Rahman F, Mishra A, Gupta A, et al. 2022. Spatiotemporal regulation of CRISPR/Cas9 enables efficient, precise, and heritable edits in plant genomes[J]. Frontiers in Ge-nome Editing, 4: 870108. [78] Ren C, Guo Y, Kong J, et al. 2020. Knockout of VvCCD8 gene in grapevine affects shoot branching[J]. BMC Plant Bi-ology, 20(1): 47. [79] Ren C, Li H, Liu Y, et al. 2022. Highly efficient activation of endogenous gene in grape using CRISPR/dCas9-based transcriptional activators[J]. Horticulture Research, 9: uhab037. [80] Ren C, Liu X, Zhang Z, et al. 2016. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinif-era L.)[J]. Scientific Reports, 6: 32289. [81] Ren C, Liu Y, Guo Y, et al. 2021. Optimizing the CRISPR/ Cas9 system for genome editing in grape by using grape promoters[J]. Horticulture Research, 8(1): 52. [82] Ren F, Ren C, Zhang Z, et al. 2019. Efficiency optimization of CRISPR/Cas9-mediated targeted mutagenesis in grape[J]. Frontiers in Plant Science, 10: 612. [83] Rodrigues S D, Karimi M, Impens L, et al. 2021. Efficient CRISPR-mediated base editing in Agrobacterium spp[J]. Proceedings of the National Academy of Sciences of the USA, 118(2): e2013338118. [84] Savadi S, Mangalassery S, Sandesh M S.2021. Advances in genomics and genome editing for breeding next genera-tion of fruit and nut crops[J]. Genomics, 113(6): 3718-3734. [85] Schröpfer S, Flachowsky H.2021. Tracing CRISPR/Cas12a mediated genome editing events in apple using high- throughput genotyping by PCR capillary gel electropho-resis[J]. International Journal of Molecular Sciences, 22(22): 12611. [86] Shao X, Wu S, Dou T, et al. 2020. Using CRISPR/Cas9 ge-nome editing system to create MaGA20ox2 gene-modi-fied semi-dwarf banana[J]. Plant Biotechnology Journal, 18(1): 17-19. [87] Shin K, Kwon S H, Lee S C, et al. 2021. Sensitive and rapid detection of Citrus Scab using an RPA-CRISPR/Cas12a system combined with a lateral flow Assay[J]. Plants, 10(10): 2132. [88] Singha D L, Das D, Sarki Y N, et al. 2022. Harnessing tissue- specific genome editing in plants through CRISPR/Cas system: current state and future prospects[J]. Planta, 255(1): 28. [89] Sunitha S, Rock C D.2020. CRISPR/Cas9-mediated targeted mutagenesis of TAS4 and MYBA7 loci in grapevine root-stock 101-14[J]. Transgenic Research, 29(3): 355-367. Tang X, Chen S, Yu H, et al. 2021. Development of a gRNA-tRNA array of CRISPR/Cas9 in combination with graft-ing technique to improve gene-editing efficiency of sweet orange[J]. Plant Cell Reports, 40(12): 2453-2456. [90] Tripathi J N, Ntui V O, Ron M, et al. 2019. CRISPR/Cas9 ed-iting of endogenous banana streak virus in the B ge-nome of Musa spp. overcomes a major challenge in ba-nana breeding[J]. Communications Biology, 2: 46. [91] Tripathi J N, Ntui V O, Shah T, et al. 2021a. CRISPR/Cas9- mediated editing of DMR6 orthologue in banana (Musa spp.) confers enhanced resistance to bacterial disease[J]. Plant Biotechnology Journal, 19: 1291-1293. [92] Tripathi L, Ntui V O, Tripathi J N, et al. 2021b. Application of CRISPR/Cas for diagnosis and management of viral dis-eases of banana[J]. Frontiers in Microbiology, 11:609784. [93] Tripathi L, Ntui V O, Tripathi J N.2022. Control of bacterial diseases of banana using CRISPR/Cas-based gene edit-ing[J]. International Journal of Molecular Sciences, 23(7): 3619. [94] Tripathi L, Ntui V O, Tripathi J N.2020. CRISPR/Cas9-based genome editing of banana for disease resistance[J]. Cur-rent Opinion in Plant Biology, 56: 118-126. [95] Tu M, Fang J, Zhao R, et al. 2022. CRISPR/Cas9-mediated mutagenesis of VvbZIP36 promotes anthocyanin accu-mulation in grapevine (Vitis vinifera)[J]. Horticulture Research, 9: uhac022. [96] Varanda C M R, Félix M R, Campos M D, et al. 2021. Plant viruses: From targets to tools for CRISPR[J]. Viruses, 13(1): 141. [97] Varkonyi-Gasic E, Wang T, Cooney J, et al. 2021. Shy Girl, a kiwifruit suppressor of feminization, restricts gynoeci-um development via regulation of cytokinin metabolism and signalling[J]. New Phytologist, 230(4): 1461-1475. [98] Varkonyi-Gasic E, Wang T, Voogd C, et al. 2019. Mutagenesis of kiwifruit CENTRORADIALIS -like genes transforms a climbing woody perennial with long juvenility and ax-illary flowering into a compact plant with rapid terminal flowering[J]. Plant Biotechnology Journal, 17(5): 869-880. [99] Voogd C, Brian L A, Wu R, et al. 2022. A MADS-box gene with similarity to FLC is induced by cold and correlated with epigenetic changes to control budbreak in kiwifruit[J]. New Phytologist, 233(5): 2111-2126. [100] Wan D Y, Guo Y, Cheng Y, et al. 2020. CRISPR/Cas9-mediat-ed mutagenesis of VvMLO3 results in enhanced resis-tance to powdery mildew in grapevine (Vitis vinifera)[J]. Horticulture Research, 7: 116. [101] Wang L, Chen S, Peng A, et al. 2019. CRISPR/Cas9-mediated editing of CsWRKY22 reduces susceptibility to Xan- thomonas citri subsp. citri in Wanjincheng orange (Citrus sinensis (L.) Osbeck)[J]. Plant Biotechnology Reports, 13(5): 501-510. [102] Wang X, Tu M, Wang D, et al. 2018a. CRISPR/Cas9 -mediat-ed efficient targeted mutagenesis in grape in the first generation[J]. Plant Biotechnology Journal, 16(4): 844-855. [103] Wang X, Tu M, Wang Y, et al. 2021. Whole-genome sequenc-ing reveals rare off-target mutations in CRISPR/Cas9- edited grapevine[J]. Horticulture Research, 8(1): 114. [104] Wang Z, Wang S, Li D, et al. 2018b. Optimized paired- sgRNA/Cas9 cloning and expression cassette triggers high-efficiency multiplex genome editing in kiwifruit[J]. Plant Biotechnology Journal, 16(8): 1424-1433. [105] Wu S, Zhu H, Liu J, et al. 2020. Establishment of a PEG-me-diated protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for ba-nana[J]. BMC Plant Biology, 20: 425. [106] Xia C, Jiang S, Tan Q, et al. 2022. Chromosomal-level ge-nome of macadamia (Macadamia integrifolia)[J]. Tropi-cal Plants, 1: 3. [107] Xu Y, Zhang L, Lu L, et al. 2022. An efficient CRISPR/Cas9 system for simultaneous editing two target sites in For- tunella hindsii[J]. Horticulture Research, 9: uhac064. [108] Yuan G, Hassan M M, Yao T, et al. 2021. Plant-based biosen-sors for detecting CRISPR-mediated genome engineer-ing[J]. ACS Synthetic Biology, 10(12): 3600-3603. [109] Zhang F, LeBlanc C, Irish V F, et al. 2017. Rapid and efficient CRISPR/Cas9 gene editing in Citrus using the YAO pro-moter[J]. Plant Cell Reports, 36(12): 1883-1887. [110] Zhang S, Wu S, Hu C, et al. 2022a. Increased mutation effi-ciency of CRISPR/Cas9 genome editing in banana by optimized construct[J]. PeerJ, 10: e12664. [111] Zhang Y, Cheng Y, Fang H, et al. 2022b. Highly efficient ge-nome editing in plant protoplasts by ribonucleoprotein delivery of CRISPR-Cas12a nucleases[J]. Frontiers in Genome Editing, 4: 780238. [112] Zhang Y, Zhou P, Bozorov T A, et al. 2021. Application of CRISPR/Cas9 technology in wild apple (Malus sieverii) for paired sites gene editing[J]. Plant Methods, 17(1): 1-9. [113] Zheng J, Meinhardt L W, Goenaga R, et al. 2022. The chromo-some-level rambutan genome reveals a significant role of segmental duplication in the expansion of resistance genes[J]. Horticulture Research, 9: uhac014. [114] Zhou H, Bai S, Wang N, et al. 2020. CRISPR/Cas9-mediated mutagenesis of MdCNGC2 in apple callus and VIGS-me-diated silencing of MdCNGC2 in fruits improve resis-tance to Botryosphaeria dothidea[J]. Frontiers in Plant Science, 11: 1640. [115] Zhu C, Zheng X, Huang Y, et al. 2019. Genome sequencing and CRISPR/Cas9 gene editing of an early flowering Mini-Citrus (Fortunella hindsii)[J]. Plant Biotechnology Journal, 17(11): 2199-2210.