Abstract:Disease-resistant transgenic papaya (Carica papaya) has made great contribution in solving the problem of Papaya ring spot virus (PRSV). At present, the main transgenic papaya lines are '55-1', 'GM YK' and 'Huanong No.1'. In order to supervise the disease-resistant transgenic papaya products in the market and protect consumers' right to know and right to choose, it is necessary to establish more efficient and accurate detection method for transgenic papaya. This study analyzed the major genetically modified (GM) papaya in the world and established a simple and efficient multiplex PCR detection method for specific sequences of the papaya endogenous reference gene Papain, screening marker gene NPTⅡ, event-specific sequences of GM papaya lines '55-1', 'GM YK' and 'Huanong No.1'. The test results suggested that the established multiplex PCR detection method had high specificity and sensitivity. Samples could be judged whether they were transgenic papaya and which type of transgenic papaya were contained by only once PCR assay and electrophoresis. This study provides technical support for the composition detection and identity verification of transgenic papaya.
[1] 白卫滨, 曹春廷, 朱翠娟, 等. 2015. 采用多重PCR技术检测转基因番木瓜华农一号[J]. 食品与发酵工业, 41(6): 165-169. (Bai W B, Cao C T, Zhu C J, et al.2015. Detection of transgenic papaya Huanong No.1 by universal multiple-primer PCR[J]. Food and Fermentation Industries, 41(6): 165-169.) [2] 陈红运, 陈双雅, 梁新苗, 等. 2010. SN/T 2653-2010, 木瓜中转基因成分定性PCR检测方法[S]. 北京: 中国标准出版社. (Chen H Y, Chen S Y, Liang X M, et al.2010. SN/T 2653-2010, Protocal of the qualitative polymerase chain reaction (PCR) for detecting genetically modified component in papaya[S]. Beijing: Standards Press of China.) [3] 国际农业生物技术应用服务组织. 2019. 2018年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 39(8): 1-6. (International service for the acquisition of agri-biotech applications.2019. The global status of commercialized biotech/GM crops in 2018[J]. China Biotechnology, 39(8): 1-6.) [4] 姜大刚, 张秀杰, 姚涓, 等. 2018. 农业农村部公告第111号-6-2018, 转基因植物及其产品成分检测抗病番木瓜55-1及其衍生品种定性PCR方法[S]. 北京: 中国农业出版社. (Jiang D G, Zhang X J, Yao J, et al.2018. Announcement of the ministry of agriculture and rural affairs No. 111-6-2018, detection of genetically modified plants and derived products-qualitative PCR method for PRSV-resistant papaya 55-1 and its derivates[S]. Beijing: China Agriculture Press.) [5] 梁利霞, 宛煜嵩, 金芜军. 2014. 利用复合PCR方法同时检测三种转基因水稻[J]. 基因组学与应用生物学, 33(1): 16-21. (Liang L X, Wan Y S, Jin W J.2014. The event-specific multiplex PCR detection method for three genetically modified rice[J]. Genomic and Applied Biology, 33(1): 16-21.) [6] 鲁军, 李刚, 赵建宁, 等. 2017. 5种转基因油菜转化体特异性多重PCR检测方法[J]. 生物安全学报, 26(3): 244-250. (Lu J, Li G, Zhao J N, et al.2017. Event-specific multiplex PCR detection method for five genetically modified canola lines[J]. Journal of Biosafety, 26(3): 244-250.) [7] 阮小蕾, 李华平, 周国辉. 2004. 转PRSV复制酶基因T2代番木瓜植株的抗病性测定[J]. 华南农业大学学报, 25(4): 12-15. (Ruan X L, Li H P, Zhou G H.2004. Evaluation of PRSV resistance of T2 transgenic papaya with replicase gene[J]. Journal of South China Agricultural University, 25(4): 12-15.) [8] 阮小蕾, 马丽娟, 李华平. 2010. 转番木瓜环斑病毒复制酶基因番木瓜的多重定性检测[J]. 湖南农业大学学报(自然科学版), 36(6): 626-629. (Ruan X L, Ma L J, Li H P.2010. Qualitative detection assay for transgenic papaya with replicase gene of Papaya ringspot virus[J]. Journal of Hunan Agricultural University (Natural Sciences), 36(6): 626-629.) [9] 王渭霞, 赖凤香, 洪利英, 等. 2009. 应用多重PCR 技术快速检测抗虫转基因水稻[J], 中国测试, 35(6): 97-101. (Wang W X, Lai F X, Hong L Y, et al.2009. Application of multiplex polymerase chain reaction to rapidly detect insect-resistant transgenic rice[J]. China Measurement & Test, 35(6): 97-101.) [10] 闫伟, 龙丽坤, 李葱葱, 等. 2019. 三种转基因大豆品系的多重荧光PCR检测体系建立[J]. 大豆科学, 38(5): 712-718. (Yan W, Long L K, Li C C, et al.2019. Establishment of detection system for three genetically modified soybean lines[J]. Soybean Science, 38(5): 712-718.) [11] 杨冬燕, 杨永存, 邓平建. 2006. 转基因番木瓜55-1的多重PCR鉴定方法研究[J]. 中国卫生检验杂志, 16(10): 1156-1157. (Yang D Y, Yang Y C, Deng P J.2006. Detection of genetically modified papaya line 55-1 by multiplex PCR[J]. Chinese Journal of Health Laboratory Technology, 16(10): 1156-1157.) [12] Cheng Y H, Yang J S, Yeh S D.1996. Efficient transformation of papaya by coat protein gene of Papaya ringspot virus mediated by Agrobacterium following liquid-phase wounding of embryogenic tissues with carborundum[J]. Plant Cell Report, 16(3-4): 127-132. [13] Fitch M M M, Manshardt R M, Gonsalves D, et al.1992. Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of Papaya ringspot virus[J]. Nature Biotechnology, 10(11): 1466-1472. [14] Wall E M, Lawrence T S, Green M J, et al.2004. Detection and identification of transgenic virus resistant papaya and squash by multiplex PCR[J]. European Food Research and Technology, 219(1): 90-96.